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emplik-package Empirical likelihood for mean functional/hazard functional with pos-
sibly censored data.

Description

Empirical likelihood ratio tests and confidence intervals for means/hazards from possibly censored
and/or truncated data. Now does regression too. The package contains some C code.
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Details

For non-censored data and mean parameters, use el.test( ).

For censored data and mean parameters, use el.cen.EM2( ).

For censored data and hazard parameters, use emplikH1.test( ) [Poisson type likelihood]; use
emplikH.disc( ) [binomial type likelihood].

For constructing confidence intervals, use findUL( ).

Author(s)

Mai Zhou (el.test is adapted from Owen’s splus code. Yifan Yang for some C code.)

Maintainer: Mai Zhou <mai@ms.uky.edu> <maizhou@gmail.com>

References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. (Chapman and Hall/CRC
Biostatistics Series) CRC press 2016

See Also

Another R package kmc for possible faster results when testing of mean with right censored data.

BJnoint The Buckley-James censored regression estimator

Description

Compute the Buckley-James estimator in the regression model

yi = βxi + ϵi

with right censored yi. Iteration method.

Usage

BJnoint(x, y, delta, beta0 = NA, maxiter=30, error = 0.00001)

Arguments

x a matrix or vector containing the covariate, one row per observation.

y a numeric vector of length N, censored responses.

delta a vector of length N, delta=0/1 for censored/uncensored.

beta0 an optional vector for starting value of iteration.

maxiter an optional integer to control iterations.

error an optional positive value to control iterations.
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Details

This function compute the Buckley-James estimator when your model do not have an intercept
term. Of course, if you include a column of 1’s in the x matrix, it is also OK with this function and
it is equivalent to having an intercept term. If your model do have an intercept term, then you could
also (probably should) use the function bj( ) in the Design library. It should be more refined than
BJnoint in the stopping rule for the iterations.

This function is included here mainly to produce the estimator value that may provide some useful
information with the function bjtest( ). For example you may want to test a beta value near the
Buckley-James estimator.

Value

A list with the following components:

beta the Buckley-James estimator.

iteration number of iterations performed.

Author(s)

Mai Zhou.

References

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66 429-36.

Examples

x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50)
## Suppose now we wish to test Ho: 2mu(1)-mu(2)=0, then
y <- 2*x[,1]-x[,2]
xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19)

bjtest Test the Buckley-James estimator by Empirical Likelihood

Description

Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to
beta.

The log empirical likelihood been maximized is∑
d=1

log∆F (ei) +
∑
d=0

log[1− F (ei)];

where ei are the residuals.
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Usage

bjtest(y, d, x, beta)

Arguments

y a vector of length N, containing the censored responses.

d a vector (length N) of either 1’s or 0’s. d=1 means y is uncensored; d=0 means
y is right censored.

x a matrix of size N by q.

beta a vector of length q. The value of the regression coefficient to be tested in the
model yi = βxi + ϵi

Details

The above likelihood should be understood as the likelihood of the error term, so in the regression
model the error epsilon should be iid.

This version can handle the model where beta is a vector (of length q).

The estimation equations used when maximize the empirical likelihood is

0 =
∑

di∆F (ei)(x ·m[, i])/(nwi)

which was described in detail in the reference below.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; have approximate chisq distribution under Ho.

logel2 the log empirical likelihood, under estimating equation.

logel the log empirical likelihood of the Kaplan-Meier of e’s.

prob the probabilities that max the empirical likelihood under estimating equation.

Author(s)

Mai Zhou.

References

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66 429-36.

Zhou, M. and Li, G. (2008). Empirical likelihood analysis of the Buckley-James estimator. Journal
of Multivariate Analysis 99, 649-664.

Zhou, M. (2016) Empirical Likelihood Method in Survival Analysis. CRC Press.

Examples

xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19)
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bjtest1d Test the Buckley-James estimator by Empirical Likelihood, 1-dim only

Description

Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to
beta. For 1-dim beta only.

The log empirical likelihood been maximized is∑
d=1

log∆F (ei) +
∑
d=0

log[1− F (ei)].

Usage

bjtest1d(y, d, x, beta)

Arguments

y a vector of length N, containing the censored responses.

d a vector of either 1’s or 0’s. d=1 means y is uncensored. d=0 means y is right
censored.

x a vector of length N, covariate.

beta a number. the regression coefficient to be tested in the model y = x beta + epsilon

Details

In the above likelihood, ei = yi − x ∗ beta is the residuals.

Similar to bjtest( ), but only for 1-dim beta.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; have approximate chi square distribution under Ho.

logel2 the log empirical likelihood, under estimating equation.

logel the log empirical likelihood of the Kaplan-Meier of e’s.

prob the probabilities that max the empirical likelihood under estimating equation
constraint.

Author(s)

Mai Zhou.
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References

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66 429-36.
Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120.
Zhou, M. and Li, G. (2008). Empirical likelihood analysis of the Buckley-James estimator. Journal
of Multivariate Analysis. 649-664.

Examples

xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19)

bjtestII Alternative test of the Buckley-James estimator by Empirical Likeli-
hood

Description

Use the empirical likelihood ratio (alternative form) and Wilks theorem to test if the regression
coefficient is equal to beta, based on the estimating equations.
The log empirical likelihood been maximized is

n∑
j=1

log pj ;
∑

pj = 1

where the probability pj is for the jth martingale differences of the estimating equations.

Usage

bjtestII(y, d, x, beta)

Arguments

y a vector of length N, containing the censored responses.
d a vector of length N. Either 1’s or 0’s. d=1 means y is uncensored; d=0 means y

is right censored.
x a matrix of size N by q.
beta a vector of length q. The value of the regression coefficient to be tested in the

model Yi = βxi + ϵi

Details

The above likelihood should be understood as the likelihood of the martingale difference terms. For
the definition of the Buckley-James martingale or estimating equation, please see the (2015) book
in the reference list.
The estimation equations used when maximize the empirical likelihood is

0 =
∑

di∆F (ei)(x ·m[, i])/(nwi)

where ei is the residuals, other details are described in the reference book of 2015 below.
The final test is carried out by el.test. So the output is similar to the output of el.test.
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Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; have approximate chisq distribution under Ho.

logel2 the log empirical likelihood, under estimating equation.

logel the log empirical likelihood of the Kaplan-Meier of e’s.

prob the probabilities that max the empirical likelihood under estimating equation.

Author(s)

Mai Zhou.

References

Zhou, M. (2016) Empirical Likelihood Methods in Survival Analysis. CRC Press.

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66 429-36.

Zhou, M. and Li, G. (2008). Empirical likelihood analysis of the Buckley-James estimator. Journal
of Multivariate Analysis, 99, 649–664.

Zhu, H. (2007) Smoothed Empirical Likelihood for Quantiles and Some Variations/Extension of
Empirical Likelihood for Buckley-James Estimator, Ph.D. dissertation, University of Kentucky.

Examples

data(myeloma)
bjtestII(y=myeloma[,1], d=myeloma[,2], x=cbind(1, myeloma[,3]), beta=c(37, -3.4))

el.cen.EM Empirical likelihood ratio for mean with right, left or doubly censored
data, by EM algorithm

Description

This program uses EM algorithm to compute the maximized (wrt pi) empirical log likelihood func-
tion for right, left or doubly censored data with the MEAN constraint:∑

di=1

pif(xi) =

∫
f(t)dF (t) = µ.

Where pi = ∆F (xi) is a probability, di is the censoring indicator, 1(uncensored), 0(right censored),
2(left censored). It also returns those pi.

The empirical log likelihood been maximized is∑
di=1

log∆F (xi) +
∑
di=0

log[1− F (xi)] +
∑
di=2

logF (xi).
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Usage

el.cen.EM(x,d,wt=rep(1,length(d)),fun=function(t){t},mu,maxit=50,error=1e-9,...)

Arguments

x a vector containing the observed survival times.

d a vector containing the censoring indicators, 1-uncensored; 0-right censored;
2-left censored.

wt a weight vector (case weight). positive. same length as d

fun a left continuous (weight) function used to calculate the mean as in H0. fun(t)
must be able to take a vector input t. Default to the identity function f(t) = t.

mu a real number used in the constraint, the mean value of f(X).

maxit an optional integer, used to control maximum number of iterations.

error an optional positive real number specifying the tolerance of iteration error. This
is the bound of the L1 norm of the difference of two successive weights.

... additional arguments, if any, to pass to fun.

Details

This implementation is all in R and have several for-loops in it. A faster version would use C to do
the for-loop part. But this version seems faster enough and is easier to port to Splus.

We return the log likelihood all the time. Sometimes, (for right censored and no censor case) we
also return the -2 log likelihood ratio. In other cases, you have to plot a curve with many values of
the parameter, mu, to find out where is the place the log likelihood becomes maximum. And from
there you can get -2 log likelihood ratio between the maximum location and your current parameter
in Ho.

In order to get a proper distribution as NPMLE, we automatically change the d for the largest
observation to 1 (even if it is right censored), similar for the left censored, smallest observation. µ
is a given constant. When the given constants µ is too far away from the NPMLE, there will be
no distribution satisfy the constraint. In this case the computation will stop. The -2 Log empirical
likelihood ratio should be infinite.

The constant mu must be inside (min f(xi),max f(xi)) for the computation to continue. It is always
true that the NPMLE values are feasible. So when the computation stops, try move the mu closer to
the NPMLE — ∑

di=1

p0i f(xi)

p0i taken to be the jumps of the NPMLE of CDF. Or use a different fun.

Difference to the function el.cen.EM2: here duplicate (input) observations are collapsed (with
weight 2, 3, ... etc.) but those will stay separate by default in the el.cen.EM2. This will lead to a
different loglik value. But the -2LLR value should be same in either version.
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Value

A list with the following components:

loglik the maximized empirical log likelihood under the constraint. This may be differ-
ent from the result of el.cen.EM2 because here the tied observations are collapes
into 1 with weight. (while el.cen.EM2 do not). However, the -2LLR should be
the same.

times locations of CDF that have positive mass. tied obs. are collapesd
prob the jump size of CDF at those locations.
"-2LLR" If available, it is Minus two times the Empirical Log Likelihood Ratio. Should

be approximately chi-square distributed under Ho.
Pval The P-value of the test, using chi-square approximation.
lam The Lagrange multiplier. Added 5/2007.

Author(s)

Mai Zhou

References

Zhou, M. (2005). Empirical likelihood ratio with arbitrary censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics, 643-656.

Murphy, S. and van der Vaart (1997) Semiparametric likelihood ratio inference. Ann. Statist. 25,
1471-1509.

Examples

## example with tied observations
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.cen.EM(x,d,mu=3.5)
## we should get "-2LLR" = 1.2466....
myfun5 <- function(x, theta, eps) {
u <- (x-theta)*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
el.cen.EM(x, d, fun=myfun5, mu=0.5, theta=3.5, eps=0.1)
## example of using wt in the input. Since the x-vector contain
## two 5 (both d=1), and two 2(both d=0), we can also do
xx <- c(1, 1.5, 2, 3, 4, 5, 6, 4, 1, 4.5)
dd <- c(1, 1, 0, 1, 0, 1, 1, 1, 0, 1)
wt <- c(1, 1, 2, 1, 1, 2, 1, 1, 1, 1)
el.cen.EM(x=xx, d=dd, wt=wt, mu=3.5)
## this should be the same as the first example.
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el.cen.EM2 Empirical likelihood ratio test for a vector of means with right, left or
doubly censored data, by EM algorithm

Description

This function is similar to el.cen.EM(), but for multiple constraints. In the input there is a vector
of observations x = (x1, · · · , xn) and a function fun. The function fun should return the (n by k)
matrix

(f1(x), f2(x), · · · , fk(x)).

Also, the ordering of the observations, when consider censoring or redistributing-to-the-right, is
according to the value of x, not fun(x). So the probability distribution is for values x. This program
uses EM algorithm to maximize (wrt pi) empirical log likelihood function for right, left or doubly
censored data with the MEAN constraint:

j = 1, 2, · · · , k
∑
di=1

pifj(xi) =

∫
fj(t)dF (t) = µj .

Where pi = ∆F (xi) is a probability, di is the censoring indicator, 1(uncensored), 0(right censored),
2(left censored). It also returns those pi. The log likelihood function is defined as∑

di=1

log∆F (xi) +
∑
di=2

logF (xi) +
∑
di=0

log[1− F (xi)] .

Usage

el.cen.EM2(x,d,xc=1:length(x),fun,mu,maxit=50,error=1e-9,...)

Arguments

x a vector containing the observed survival times.

d a vector containing the censoring indicators, 1-uncensored; 0-right censored;
2-left censored.

xc an optional vector of collapsing control values. If xc[i] xc[j] have different val-
ues then (x[i], d[i]), (x[j], d[j]) will not merge into one observation with weight
two, even if they are identical. Default is not to merge.

fun a left continuous (weight) function that returns a matrix. The columns (=k) of
the matrix is used to calculate the means and will be tested in H0. fun(t) must
be able to take a vector input t.

mu a vector of length k. Used in the constraint, as the mean of f(X).

maxit an optional integer, used to control maximum number of iterations.

error an optional positive real number specifying the tolerance of iteration error. This
is the bound of the L1 norm of the difference of two successive weights.

... additional inputs to pass to fun().
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Details

This implementation is all in R and have several for-loops in it. A faster version would use C to do
the for-loop part. (but this version is easier to port to Splus, and seems faster enough).

We return the log likelihood all the time. Sometimes, (for right censored and no censor case) we
also return the -2 log likelihood ratio. In other cases, you have to plot a curve with many values of
the parameter, mu, to find out where the log likelihood becomes maximum. And from there you
can get -2 log likelihood ratio between the maximum location and your current parameter in Ho.

In order to get a proper distribution as NPMLE, we automatically change the d for the largest
observation to 1 (even if it is right censored), similar for the left censored, smallest observation.
µ is a given constant vector. When the given constants µ is too far away from the NPMLE, there
will be no distribution satisfy the constraint. In this case the computation will stop. The -2 Log
empirical likelihood ratio should be infinite.

The constant vector mu must be inside (min f(xi),max f(xi)) for the computation to continue. It
is always true that the NPMLE values are feasible. So when the computation stops, try move the mu
closer to the NPMLE —

µ̂j =
∑
di=1

p0i fj(xi)

where p0i taken to be the jumps of the NPMLE of CDF. Or use a different fun.

Difference to the function el.cen.EM: due to the introduction of input xc here in this function,
the output loglik may be different compared to the function el.cen.EM due to not collapsing of
duplicated input survival values. The -2LLR should be the same from both functions.

Value

A list with the following components:

loglik the maximized empirical log likelihood under the constraints.

times locations of CDF that have positive mass.

prob the jump size of CDF at those locations.

"-2LLR" If available, it is Minus two times the Empirical Log Likelihood Ratio. Should
be approx. chi-square distributed under Ho.

Pval If available, the P-value of the test, using chi-square approximation.

lam the Lagrange multiplier in the final EM step. (the M-step)

Author(s)

Mai Zhou

References

Zhou, M. (2005). Empirical likelihood ratio with arbitrary censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics, 643-656.

Zhou, M. (2002). Computing censored empirical likelihood ratio by EM algorithm. Tech Report,
Univ. of Kentucky, Dept of Statistics
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Examples

## censored regression with one right censored observation.
## we check the estimation equation, with the MLE inside myfun7.
y <- c(3, 5.3, 6.4, 9.1, 14.1, 15.4, 18.1, 15.3, 14, 5.8, 7.3, 14.4)
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
### first we estimate beta, the MLE
lm.wfit(x=cbind(rep(1,12),x), y=y, w=WKM(x=y, d=d)$jump[rank(y)])$coef
## you should get 1.392885 and 2.845658
## then define myfun7 with the MLE value
myfun7 <- function(y, xmat) {
temp1 <- y - ( 1.392885 + 2.845658 * xmat)
return( cbind( temp1, xmat*temp1) )
}
## now test
el.cen.EM2(y,d, fun=myfun7, mu=c(0,0), xmat=x)
## we should get, Pval = 1 , as the MLE should.
## for other values of (a, b) inside myfun7, you get other Pval
##
rqfun1 <- function(y, xmat, beta, tau = 0.5) {
temp1 <- tau - (1-myfun55(y-beta*xmat))
return(xmat * temp1)
}
myfun55 <- function(x, eps=0.001){
u <- x*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
## myfun55 is a smoothed indicator fn.
## eps should be between (1/sqrt(n), 1/n^0.75) [Chen and Hall]
el.cen.EM2(x=y,d=d,xc=1:12,fun=rqfun1,mu=0,xmat=x,beta=3.08,tau=0.44769875)
## default tau=0.5
el.cen.EM2(x=y,d=d,xc=1:12,fun=rqfun1,mu=0,xmat=x,beta=3.0799107404)
###################################################
### next 2 examples are testing the mean/median residual time
###################################################
mygfun <- function(s, age, muage) {as.numeric(s >= age)*(s-(age+muage))}
mygfun2 <- function(s, age, Mdage)

{as.numeric(s <= (age+Mdage)) - 0.5*as.numeric(s <= age)}
## Not run:
library(survival)
time <- cancer$time
status <- cancer$status-1
###for mean residual time
el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=234)$Pval
el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=323)$Pval
### for median resudual time
el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0.5, age=365.25, Mdage=184)$Pval
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el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0.5, age=365.25, Mdage=321)$Pval

## End(Not run)
## Not run:
#### For right censor only data (Kaplan-Meier) we can use this function to get a faster computation
#### by calling the kmc 0.2-2 package.
el.cen.R <- function (x, d, xc = 1:length(x), fun, mu, error = 1e-09, ...)
{
xvec <- as.vector(x)
d <- as.vector(d)
mu <- as.vector(mu)
xc <- as.vector(xc)
n <- length(d)
if (length(xvec) != n)
stop("length of d and x must agree")
if (length(xc) != n)
stop("length of xc and d must agree")
if (n <= 2 * length(mu) + 1)
stop("Need more observations")
if (any((d != 0) & (d != 1) ))
stop("d must be 0(right-censored) or 1(uncensored)")
if (!is.numeric(xvec))
stop("x must be numeric")
if (!is.numeric(mu))
stop("mu must be numeric")

funx <- as.matrix(fun(xvec, ...))
pp <- ncol(funx)
if (length(mu) != pp)
stop("length of mu and ncol of fun(x) must agree")
temp <- Wdataclean5(z = xvec, d, zc = xc, xmat = funx)
x <- temp$value
d <- temp$dd
w <- temp$weight
funx <- temp$xxmat
d[length(d)] <- 1
xd1 <- x[d == 1]
if (length(xd1) <= 1)
stop("need more distinct uncensored obs.")
funxd1 <- funx[d == 1, ]
xd0 <- x[d == 0]
wd1 <- w[d == 1]
wd0 <- w[d == 0]
m <- length(xd0)

pnew <- NA
num <- NA
if (m > 0) {
gfun <- function(x) { return( fun(x, ...) - mu ) }
temp <- kmc.solve(x=x, d=d, g=list(gfun))
logel <- temp$loglik.h0
logel00 <- temp$loglik.null
lam <- - temp$lambda



el.cen.kmc1d 15

}
if (m == 0) {
num <- 0
temp6 <- el.test.wt2(x = funxd1, wt = wd1, mu)
pnew <- temp6$prob
lam <- temp6$lambda
logel <- sum(wd1 * log(pnew))
logel00 <- sum(wd1 * log(wd1/sum(wd1)))
}
tval <- 2 * (logel00 - logel)
list(loglik = logel, times = xd1, prob = pnew, lam = lam,
iters = num, `-2LLR` = tval, Pval = 1 - pchisq(tval,
df = length(mu)))
}

## End(Not run)

el.cen.kmc1d Empirical likelihood ratio for 1 mean constraint with right censored
data

Description

This program uses a fast recursive formula to compute the maximized (wrt pi) empirical log likeli-
hood ratio for right censored data with one MEAN constraint:∑

di=1

pif(xi) =

∫
f(t)dF (t) = µ.

Where pi = ∆F (xi) is a probability, di is the censoring indicator, 1(uncensored), 0(right censored).
It also returns those pi.

The empirical log likelihood been maximized is∑
di=1

log∆F (xi) +
∑
di=0

log[1− F (xi)].

Usage

el.cen.kmc1d(x, d, fun, mu, tol = .Machine$double.eps^0.5, step=0.001, ...)

Arguments

x a vector containing the observed survival times.

d a vector containing the censoring indicators, 1-uncensored; 0-right censored.

fun a left continuous (weight) function used to calculate the mean as in H0. fun(t)
must be able to take a vector input t.

mu a real number used in the constraint, the mean value of f(X).
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tol a small positive number, for the uniroot error tol.

step a small positive number, for use in the uniroot function (as interval) to find
lambda root. Sometimes uniroot will find the wrong root or no root, resulting a
negative "-2LLR" or NA. Change the step to a different value often can fix this
(but not always). Another sign of wrong root is that the sum of probabilities not
sum to one, or has negative probability values.

... additional arguments, if any, to pass to fun.

Details

This function is similar to the function in package kmc, but much simpler, i.e. all implemented in R
and only for one mean. This implementation have two for-loops in R. A faster version would use C
to do the for-loop part. But this version seems fast enough and is easier to port to Splus.

We return the log likelihood all the time. Sometimes, (for right censored case) we also return the
-2 log likelihood ratio. In other cases, you have to plot a curve with many values of the parameter,
mu, to find out where is the place the log likelihood becomes maximum. And from there you can
get -2 log likelihood ratio between the maximum location and your current parameter in Ho.

The input step is used in uniroot function to find a root of lambda. Sometimes a step value may
lead to no root or result in a wrong root. You may try several values for the step to see. If the
probabilities returned do not sum to one, then the lambda root is a wrong root. We want the root
closest to zero.

In order to get a proper distribution as NPMLE, we automatically change the d for the largest
observation to 1 (even if it is right censored). µ is a given constant. When the given constants µ
is too far away from the NPMLE, there will be no distribution satisfy the constraint. In this case
the computation will stop or return something ridiculas, (as negative -2LLR). The -2 Log empirical
likelihood ratio may be +infinite.

The constant mu must be inside (min f(xi),max f(xi)) (with uncensored xi) for the computation
to continue. It is always true that the NPMLE values are feasible. So when the computation stops,
try move the mu closer to the NPMLE — ∑

di=1

p0i f(xi)

p0i taken to be the jumps of the NPMLE of CDF. Or use a different fun.

Value

A list with the following components:

loglik the maximized empirical log likelihood under the constraint. Note, here the tied
observations are not collapsed into one obs. with weight 2 (as in el.cen.EM), so
the value may differ from those that do collapse the tied obs. In any case, the
-2LLR should not differ (whether collaps or not).

times locations of CDF that have positive mass.

prob the jump size of CDF at those locations.
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"-2LLR" If available, it is minus two times the empirical Log Likelihood Ratio. Should
be approximately chi-square distributed under Ho. If you got NA or negative
value, then something is wrong, most likely the uniroot has found the wrong
root. Suggest: use el.cen.EM2() which uses EM algorithm. It is more stable but
slower.

Pval The P-value of the test, using chi-square approximation.
lam The Lagrange multiplier.

Author(s)

Mai Zhou

References

Zhou, M. and Yang, Y. (2015). A recursive formula for the Kaplan-Meier estimator with mean
constraints and its application to empirical likelihood. Computational Statistics Vol. 30, Issue 4 pp.
1097-1109.
Zhou, M. (2005). Empirical likelihood ratio with arbitrary censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics, 14(3), 643-656.

Examples

x <- c(1, 1.5, 2, 3, 4.2, 5, 6.1, 5.3, 4.5, 0.9, 2.1, 4.3)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
ff <- function(x) {

x - 3.7
}
el.cen.kmc1d(x=x, d=d, fun=ff, mu=0)
#######################################
## example with tied observations
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.cen.EM(x,d,mu=3.5)
## we should get "-2LLR" = 1.2466....
myfun5 <- function(x, theta, eps) {
u <- (x-theta)*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
el.cen.EM(x, d, fun=myfun5, mu=0.5, theta=3.5, eps=0.1)
## example of using wt in the input. Since the x-vector contain
## two 5 (both d=1), and two 2(both d=0), we can also do
xx <- c(1, 1.5, 2, 3, 4, 5, 6, 4, 1, 4.5)
dd <- c(1, 1, 0, 1, 0, 1, 1, 1, 0, 1)
wt <- c(1, 1, 2, 1, 1, 2, 1, 1, 1, 1)
el.cen.EM(x=xx, d=dd, wt=wt, mu=3.5)
## this should be the same as the first example.
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el.cen.test Empirical likelihood ratio for mean with right censored data, by QP.

Description

This program computes the maximized (wrt pi) empirical log likelihood function for right censored
data with the MEAN constraint:∑

i

[dipig(xi)] =

∫
g(t)dF (t) = µ

where pi = ∆F (xi) is a probability, di is the censoring indicator. The d for the largest observation
is always taken to be 1. It then computes the -2 log empirical likelihood ratio which should be
approximately chi-square distributed if the constraint is true. Here F (t) is the (unknown) CDF;
g(t) can be any given left continuous function in t. µ is a given constant. The data must contain
some right censored observations. If there is no censoring or the only censoring is the largest
observation, the code will stop and we should use el.test( ) which is for uncensored data.

The log empirical likelihood been maximized is∑
di=1

log∆F (xi) +
∑
di=0

log[1− F (xi)].

Usage

el.cen.test(x,d,fun=function(x){x},mu,error=1e-8,maxit=15)

Arguments

x a vector containing the observed survival times.

d a vector containing the censoring indicators, 1-uncensor; 0-censor.

fun a left continuous (weight) function used to calculate the mean as in H0. fun(t)
must be able to take a vector input t. Default to the identity function f(t) = t.

mu a real number used in the constraint, sum to this value.

error an optional positive real number specifying the tolerance of iteration error in
the QP. This is the bound of the L1 norm of the difference of two successive
weights.

maxit an optional integer, used to control maximum number of iterations.

Details

When the given constants µ is too far away from the NPMLE, there will be no distribution satisfy
the constraint. In this case the computation will stop. The -2 Log empirical likelihood ratio should
be infinite.

The constant mu must be inside (min f(xi),max f(xi)) for the computation to continue. It is always
true that the NPMLE values are feasible. So when the computation cannot continue, try move the
mu closer to the NPMLE, or use a different fun.
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This function depends on Wdataclean2(), WKM() and solve3.QP()

This function uses sequential Quadratic Programming to find the maximum. Unlike other functions
in this package, it can be slow for larger sample sizes. It took about one minute for a sample of size
2000 with 20% censoring on a 1GHz, 256MB PC, about 19 seconds on a 3 GHz 512MB PC.

Value

A list with the following components:

"-2LLR" The -2Log Likelihood ratio.

xtimes the location of the CDF jumps.

weights the jump size of CDF at those locations.

Pval P-value

error the L1 norm between the last two wts.

iteration number of iterations carried out

Author(s)

Mai Zhou, Kun Chen

References

Pan, X. and Zhou, M. (1999). Using 1-parameter sub-family of distributions in empirical likelihood
ratio with censored data. J. Statist. Plann. Inference. 75, 379-392.

Chen, K. and Zhou, M. (2000). Computing censored empirical likelihood ratio using Quadratic
Programming. Tech Report, Univ. of Kentucky, Dept of Statistics

Zhou, M. and Chen, K. (2007). Computation of the empirical likelihood ratio from censored data.
Journal of Statistical Computing and Simulation, 77, 1033-1042.

Examples

el.cen.test(rexp(100), c(rep(0,25),rep(1,75)), mu=1.5)
## second example with tied observations
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.cen.test(x,d,mu=3.5)
# we should get "-2LLR" = 1.246634 etc.
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el.ltrc.EM Empirical likelihood ratio for mean with left truncated and right cen-
sored data, by EM algorithm

Description

This program uses EM algorithm to compute the maximized (wrt pi) empirical log likelihood func-
tion for left truncated and right censored data with the MEAN constraint:∑

di=1

pif(xi) =

∫
f(t)dF (t) = µ .

Where pi = ∆F (xi) is a probability, di is the censoring indicator, 1(uncensored), 0(right censored).
The d for the largest observation x, is always (automatically) changed to 1. µ is a given constant.
This function also returns those pi.

The log empirical likelihood function been maximized is∑
di=1

log
∆F (xi)

1− F (yi)
+

∑
di=0

log
1− F (xi)

1− F (yi)
.

Usage

el.ltrc.EM(y,x,d,fun=function(t){t},mu,maxit=30,error=1e-9)

Arguments

y an optional vector containing the observed left truncation times.

x a vector containing the censored survival times.

d a vector containing the censoring indicators, 1-uncensored; 0-right censored.

fun a continuous (weight) function used to calculate the mean as in H0. fun(t)
must be able to take a vector input t. Default to the identity function f(t) = t.

mu a real number used in the constraint, mean value of f(X).

error an optional positive real number specifying the tolerance of iteration error. This
is the bound of the L1 norm of the difference of two successive weights.

maxit an optional integer, used to control maximum number of iterations.

Details

We return the -2 log likelihood ratio, and the constrained NPMLE of CDF. The un-constrained
NPMLE should be WJT or Lynden-Bell estimator.

When the given constants µ is too far away from the NPMLE, there will be no distribution satisfy
the constraint. In this case the computation will stop. The -2 Log empirical likelihood ratio should
be infinite.
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The constant mu must be inside (min f(xi),max f(xi)) for the computation to continue. It is always
true that the NPMLE values are feasible. So when the computation stops, try move the mu closer to
the NPMLE — ∑

di=1

p0i f(xi)

p0i taken to be the jumps of the NPMLE of CDF. Or use a different fun.

This implementation is all in R and have several for-loops in it. A faster version would use C to do
the for-loop part. (but this version is easier to port to Splus, and seems faster enough).

Value

A list with the following components:

times locations of CDF that have positive mass.

prob the probability of the constrained NPMLE of CDF at those locations.

"-2LLR" It is Minus two times the Empirical Log Likelihood Ratio. Should be approxi-
mate chi-square distributed under Ho.

Author(s)

Mai Zhou

References

Zhou, M. (2002). Computing censored and truncated empirical likelihood ratio by EM algorithm.
Tech Report, Univ. of Kentucky, Dept of Statistics

Tsai, W. Y., Jewell, N. P., and Wang, M. C. (1987). A note on product-limit estimator under right
censoring and left truncation. Biometrika, 74, 883-886.

Turnbbull, B. (1976). The empirical distribution function with arbitrarily grouped, censored and
truncated data. JRSS B, 290-295.

Zhou, M. (2005). Empirical likelihood ratio with arbitrarily censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics 14, 643-656.

Examples

## example with tied observations
y <- c(0, 0, 0.5, 0, 1, 2, 2, 0, 0, 0, 0, 0 )
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.ltrc.EM(y,x,d,mu=3.5)
ypsy <- c(51, 58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36)
xpsy <- c(52, 59, 57, 50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 65, 76)
dpsy <- c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1 )
el.ltrc.EM(ypsy,xpsy,dpsy,mu=64)
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el.test Empirical likelihood ratio test for the means, uncensored data

Description

Compute the empirical likelihood ratio with the mean vector fixed at mu.

The log empirical likelihood been maximized is

n∑
i=1

log∆F (xi).

Usage

el.test(x, mu, lam, maxit=25, gradtol=1e-7,
svdtol = 1e-9, itertrace=FALSE)

Arguments

x a matrix or vector containing the data, one row per observation.

mu a numeric vector (of length = ncol(x)) to be tested as the mean vector of x
above, as H0.

lam an optional vector of length = length(mu), the starting value of Lagrange mul-
tipliers, will use 0 if missing.

maxit an optional integer to control iteration when solve constrained maximization.

gradtol an optional real value for convergence test.

svdtol an optional real value to detect singularity while solve equations.

itertrace a logical value. If the iteration history needs to be printed out.

Details

If mu is in the interior of the convex hull of the observations x, then wts should sum to n. If mu is
outside the convex hull then wts should sum to nearly zero, and -2LLR will be a large positive num-
ber. It should be infinity, but for inferential purposes a very large number is essentially equivalent.
If mu is on the boundary of the convex hull then wts should sum to nearly k where k is the number
of observations within that face of the convex hull which contains mu.

When mu is interior to the convex hull, it is typical for the algorithm to converge quadratically to
the solution, perhaps after a few iterations of searching to get near the solution. When mu is outside
or near the boundary of the convex hull, then the solution involves a lambda of infinite norm.
The algorithm tends to nearly double lambda at each iteration and the gradient size then decreases
roughly by half at each iteration.

The goal in writing the algorithm was to have it “fail gracefully" when mu is not inside the convex
hull. The user can either leave -2LLR “large and positive" or can replace it by infinity when the
weights do not sum to nearly n.
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Value

A list with the following components:

-2LLR the -2 loglikelihood ratio; approximate chisq distribution under Ho.

Pval the observed P-value by chi-square approximation.

lambda the final value of Lagrange multiplier.

grad the gradient at the maximum.

hess the Hessian matrix.

wts weights on the observations

nits number of iteration performed

Author(s)

Original Splus code by Art Owen. Adapted to R by Mai Zhou.

References

Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90-120.

Examples

x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50)
el.test(x, mu=c(1,2))
## Suppose now we wish to test Ho: 2mu(1)-mu(2)=0, then
y <- 2*x[,1]-x[,2]
el.test(y, mu=0)
xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19)
el.test(xx, mu=15) #### -2LLR = 1.805702

el.test.wt Weighted Empirical Likelihood ratio for mean, uncensored data

Description

This program is similar to el.test( ) except it takes weights, and is for one dimensional mu.

The mean constraint considered is:
n∑

i=1

pixi = µ.

where pi = ∆F (xi) is a probability. Plus the probability constraint:
∑
pi = 1.

The weighted log empirical likelihood been maximized is

n∑
i=1

wi log pi.
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Usage

el.test.wt(x, wt, mu, usingC=TRUE)

Arguments

x a vector containing the observations.

wt a vector containing the weights.

mu a real number used in the constraint, weighted mean value of f(X).

usingC TRUE: use C function, which may be benifit when sample size is large; FALSE:
use pure R function.

Details

This function used to be an internal function. It becomes external because others may find it useful
elsewhere.

The constant mu must be inside (minxi,maxxi) for the computation to continue.

Value

A list with the following components:

x the observations.

wt the vector of weights.

prob The probabilities that maximized the weighted empirical likelihood under mean
constraint.

Author(s)

Mai Zhou, Y.F. Yang for C part.

References

Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90-120.

Zhou, M. (2002). Computing censored empirical likelihood ratio by EM algorithm. Tech Report,
Univ. of Kentucky, Dept of Statistics

Examples

## example with tied observations
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.cen.EM(x,d,mu=3.5)
## we should get "-2LLR" = 1.2466....
myfun5 <- function(x, theta, eps) {
u <- (x-theta)*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
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y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
el.cen.EM(x, d, fun=myfun5, mu=0.5, theta=3.5, eps=0.1)

el.test.wt2 Weighted Empirical Likelihood ratio for mean(s), uncensored data

Description

This program is similar to el.test( ) except it takes weights.

The mean constraints are:
n∑

i=1

pixi = µ.

Where pi = ∆F (xi) is a probability. Plus the probability constraint:
∑
pi = 1.

The weighted log empirical likelihood been maximized is
n∑

i=1

wi log pi.

Usage

el.test.wt2(x, wt, mu, maxit = 25, gradtol = 1e-07, Hessian = FALSE,
svdtol = 1e-09, itertrace = FALSE)

Arguments

x a matrix (of size nxp) or vector containing the observations.
wt a vector of length n, containing the weights. If weights are all 1, this is very

simila to el.test. wt have to be positive.
mu a vector of length p, used in the constraint. weighted mean value of f(X).
maxit an integer, the maximum number of iteration.
gradtol a positive real number, the tolerance for a solution
Hessian logical. if the Hessian needs to be computed?
svdtol tolerance in perform SVD of the Hessian matrix.
itertrace TRUE/FALSE, if the intermediate steps needs to be printed.

Details

This function used to be an internal function. It becomes external because others may find it useful.

It is similar to the function el.test( ) with the following differences:

(1) The output lambda in el.test.wts, when divided by n (the sample size or sum of all the weights)
should be equal to the output lambda in el.test.

(2) The Newton step of iteration in el.test.wts is different from those in el.test. (even when all the
weights are one).
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Value

A list with the following components:

lambda the Lagrange multiplier. Solution.

wt the vector of weights.

grad The gradian at the final solution.

nits number of iterations performed.

prob The probabilities that maximized the weighted empirical likelihood under mean
constraint.

Author(s)

Mai Zhou

References

Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90-120.

Zhou, M. (2005). Empirical likelihood ratio with arbitrary censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics, 14, 643-656.

Zhou, M. (2002). Computing censored empirical likelihood ratio by EM algorithm. Tech Report,
Univ. of Kentucky, Dept of Statistics

Examples

## example with tied observations
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
el.cen.EM(x,d,mu=3.5)
## we should get "-2LLR" = 1.2466....
myfun5 <- function(x, theta, eps) {
u <- (x-theta)*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
el.cen.EM(x, d, fun=myfun5, mu=0.5, theta=3.5, eps=0.1)
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el.trun.test Empirical likelihood ratio for mean with left truncated data

Description

This program uses EM algorithm to compute the maximized (wrt pi) empirical log likelihood func-
tion for left truncated data with the MEAN constraint:∑

pif(xi) =

∫
f(t)dF (t) = µ .

Where pi = ∆F (xi) is a probability. µ is a given constant. It also returns those pi and the pi
without constraint, the Lynden-Bell estimator.

The log likelihood been maximized is

n∑
i=1

log
∆F (xi)

1− F (yi)
.

Usage

el.trun.test(y,x,fun=function(t){t},mu,maxit=20,error=1e-9)

Arguments

y a vector containing the left truncation times.

x a vector containing the survival times. truncation means x>y.

fun a continuous (weight) function used to calculate the mean as in H0. fun(t)
must be able to take a vector input t. Default to the identity function f(t) = t.

mu a real number used in the constraint, mean value of f(X).

error an optional positive real number specifying the tolerance of iteration error. This
is the bound of the L1 norm of the difference of two successive weights.

maxit an optional integer, used to control maximum number of iterations.

Details

This implementation is all in R and have several for-loops in it. A faster version would use C to do
the for-loop part. But it seems faster enough and is easier to port to Splus.

When the given constants µ is too far away from the NPMLE, there will be no distribution satisfy
the constraint. In this case the computation will stop. The -2 Log empirical likelihood ratio should
be infinite.

The constant mu must be inside (min f(xi),max f(xi)) for the computation to continue. It is always
true that the NPMLE values are feasible. So when the computation stops, try move the mu closer to
the NPMLE — ∑

di=1

p0i f(xi)

p0i taken to be the jumps of the NPMLE of CDF. Or use a different fun.
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Value

A list with the following components:

"-2LLR" the maximized empirical log likelihood ratio under the constraint.

NPMLE jumps of NPMLE of CDF at ordered x.

NPMLEmu same jumps but for constrained NPMLE.

Author(s)

Mai Zhou

References

Zhou, M. (2005). Empirical likelihood ratio with arbitrary censored/truncated data by EM algo-
rithm. Journal of Computational and Graphical Statistics, 14, 643-656.

Li, G. (1995). Nonparametric likelihood ratio estimation of probabilities for truncated data. JASA
90, 997-1003.

Turnbull (1976). The empirical distribution function with arbitrarily grouped, censored and trun-
cated data. JRSS B 38, 290-295.

Examples

## example with tied observations
vet <- c(30, 384, 4, 54, 13, 123, 97, 153, 59, 117, 16, 151, 22, 56, 21, 18,

139, 20, 31, 52, 287, 18, 51, 122, 27, 54, 7, 63, 392, 10)
vetstart <- c(0,60,0,0,0,33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
el.trun.test(vetstart, vet, mu=80, maxit=15)

emplikH.disc Empirical likelihood ratio for discrete hazard with right censored, left
truncated data

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∑
i

[f(xi, θ) log(1− dH(xi))] = K

where H(t) is the (unknown) discrete cumulative hazard function; f(t, θ) can be any predictable
function of t. θ is the parameter of the function and K is a given constant. The data can be right
censored and left truncated.

When the given constants θ and/or K are too far away from the NPMLE, there will be no hazard
function satisfy this constraint and the minus 2Log empirical likelihood ratio will be infinite. In this
case the computation will stop.
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Usage

emplikH.disc(x, d, y= -Inf, K, fun, tola=.Machine$double.eps^.25, theta)

Arguments

x a vector, the observed survival times.

d a vector, the censoring indicators, 1-uncensor; 0-censor.

y optional vector, the left truncation times.

K a real number used in the constraint, sum to this value.

fun a left continuous (weight) function used to calculate the weighted discrete haz-
ard inH0. fun(x, theta) must be able to take a vector input x, and a parameter
theta.

tola an optional positive real number specifying the tolerance of iteration error in
solve the non-linear equation needed in constrained maximization.

theta a given real number used as the parameter of the function f .

Details

The log likelihood been maximized is the ‘binomial’ empirical likelihood:∑
Di logwi + (Ri −Di) log[1− wi]

where wi = ∆H(ti) is the jump of the cumulative hazard function, Di is the number of failures
observed at ti, Ri is the number of subjects at risk at time ti.

For discrete distributions, the jump size of the cumulative hazard at the last jump is always 1. We
have to exclude this jump from the summation since log(1− dH(·)) do not make sense.

The constants theta and K must be inside the so called feasible region for the computation to
continue. This is similar to the requirement that in testing the value of the mean, the value must be
inside the convex hull of the observations. It is always true that the NPMLE values are feasible. So
when the computation stops, try move the theta and K closer to the NPMLE. When the computation
stops, the -2LLR should have value infinite.

In case you do not need the theta in the definition of the function f , you still need to formally
define your fun function with a theta input, just to match the arguments.

Value

A list with the following components:

times the location of the hazard jumps.

wts the jump size of hazard function at those locations.

lambda the final value of the Lagrange multiplier.

"-2LLR" The discrete -2Log Likelihood ratio.

Pval P-value

niters number of iterations used
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Author(s)

Mai Zhou

References

Fang, H. (2000). Binomial Empirical Likelihood Ratio Method in Survival Analysis. Ph.D. Thesis,
Univ. of Kentucky, Dept of Statistics.

Zhou and Fang (2001). “Empirical likelihood ratio for 2 sample problem for censored data”. Tech
Report, Univ. of Kentucky, Dept of Statistics

Zhou, M. and Fang, H. (2006). A comparison of Poisson and binomial empirical likelihood. Tech
Report, Univ. of Kentucky, Dept of Statistics

Examples

fun4 <- function(x, theta) { as.numeric(x <= theta) }
x <- c(1, 2, 3, 4, 5, 6, 5, 4, 3, 4, 1, 2.4, 4.5)
d <- c(1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1)
# test if -H(4) = -0.7
emplikH.disc(x=x,d=d,K=-0.7,fun=fun4,theta=4)
# we should get "-2LLR" 0.1446316 etc....
y <- c(-2,-2, -2, 1.5, -1)
emplikH.disc(x=x,d=d,y=y,K=-0.7,fun=fun4,theta=4)

emplikH.disc2 Two sample empirical likelihood ratio for discrete hazards with right
censored, left truncated data, one parameter.

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∫
f1(t)I[dH1<1] log(1− dH1(t))−

∫
f2(t)I[dH2<1] log(1− dH2(t)) = θ

where H∗(t) is the (unknown) discrete cumulative hazard function; f∗(t) can be any predictable
functions of t. θ is the parameter. The given value of θ in these computation is the value to be
tested. The data can be right censored and left truncated.

When the given constants θ is too far away from the NPMLE, there will be no hazard function
satisfy this constraint and the -2 Log empirical likelihood ratio will be infinite. In this case the
computation will stop.

Usage

emplikH.disc2(x1, d1, y1= -Inf, x2, d2, y2 = -Inf,
theta, fun1, fun2, tola = 1e-6, maxi, mini)
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Arguments

x1 a vector, the observed survival times, sample 1.

d1 a vector, the censoring indicators, 1-uncensor; 0-censor.

y1 optional vector, the left truncation times.

x2 a vector, the observed survival times, sample 2.

d2 a vector, the censoring indicators, 1-uncensor; 0-censor.

y2 optional vector, the left truncation times.

fun1 a predictable function used to calculate the weighted discrete hazard in H0.
fun1(x) must be able to take a vector input x.

fun2 similar to fun1, but for sample 2.

tola an optional positive real number, the tolerance of iteration error in solve the
non-linear equation needed in constrained maximization.

theta a given real number. for Ho constraint.

maxi upper bound for lambda, usually positive.

mini lower bound for lambda, usually negative.

Details

The log likelihood been maximized is the ‘binomial’ empirical likelihood:∑
D1i logwi + (R1i −D1i) log[1− wi] +

∑
D2j log vj + (R2j −D2j) log[1− vj ]

where wi = ∆H1(ti) is the jump of the cumulative hazard function at ti, D1i is the number of
failures observed at ti, R1i is the number of subjects at risk at time ti.

For discrete distributions, the jump size of the cumulative hazard at the last jump is always 1. We
have to exclude this jump from the summation in the constraint calculation since log(1 − dH(·))
do not make sense.

The constants theta must be inside the so called feasible region for the computation to continue.
This is similar to the requirement that in ELR testing the value of the mean, the value must be inside
the convex hull of the observations. It is always true that the NPMLE values are feasible. So when
the computation stops, try move the theta closer to the NPMLE. When the computation stops, the
-2LLR should have value infinite.

Value

A list with the following components:

times the location of the hazard jumps.

wts the jump size of hazard function at those locations.

lambda the final value of the Lagrange multiplier.

"-2LLR" The -2Log Likelihood ratio.

Pval P-value

niters number of iterations used
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Author(s)

Mai Zhou

References

Zhou and Fang (2001). “Empirical likelihood ratio for 2 sample problems for censored data”. Tech
Report, Univ. of Kentucky, Dept of Statistics

Examples

if(require("boot", quietly = TRUE)) {
####library(boot)
data(channing)
ymale <- channing[1:97,2]
dmale <- channing[1:97,5]
xmale <- channing[1:97,3]
yfemale <- channing[98:462,2]
dfemale <- channing[98:462,5]
xfemale <- channing[98:462,3]
fun1 <- function(x) { as.numeric(x <= 960) }
emplikH.disc2(x1=xfemale, d1=dfemale, y1=yfemale,
x2=xmale, d2=dmale, y2=ymale, theta=0.2, fun1=fun1, fun2=fun1, maxi=4, mini=-10)

######################################################
### You should get "-2LLR" = 1.511239 and a lot more other outputs.
########################################################
emplikH.disc2(x1=xfemale, d1=dfemale, y1=yfemale,
x2=xmale, d2=dmale, y2=ymale, theta=0.25, fun1=fun1, fun2=fun1, maxi=4, mini=-5)

########################################################
### This time you get "-2LLR" = 1.150098 etc. etc.
##############################################################
}

emplikH1.test Empirical likelihood for hazard with right censored, left truncated
data

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∫
f(t)dH(t) = θ

with right censored, left truncated data. Where H(t) is the unknown cumulative hazard function;
f(t) can be any given function and θ a given constant. In fact, f(t) can even be data dependent, just
have to be ‘predictable’.

Usage

emplikH1.test(x, d, y= -Inf, theta, fun, tola=.Machine$double.eps^.5)
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Arguments

x a vector of the censored survival times.

d a vector of the censoring indicators, 1-uncensor; 0-censor.

y a vector of the observed left truncation times.

theta a real number used in the H0 to set the hazard to this value.

fun a left continuous (weight) function used to calculate the weighted hazard in H0.
fun must be able to take a vector input. See example below.

tola an optional positive real number specifying the tolerance of iteration error in
solve the non-linear equation needed in constrained maximization.

Details

This function is designed for the case where the true distributions are all continuous. So there should
be no tie in the data.

The log empirical likelihood used here is the ‘Poisson’ version empirical likelihood:

n∑
i=1

δi log(dH(xi))− [H(xi)−H(yi)] .

If there are ties in the data that are resulted from rounding, you may break the tie by adding a
different tiny number to the tied observation(s). If those are true ties (thus the true distribution is
discrete) we recommend use emplikdisc.test().

The constant theta must be inside the so called feasible region for the computation to continue.
This is similar to the requirement that in testing the value of the mean, the value must be inside the
convex hull of the observations. It is always true that the NPMLE values are feasible. So when
the computation complains that there is no hazard function satisfy the constraint, you should try to
move the theta value closer to the NPMLE. When the computation stops prematurely, the -2LLR
should have value infinite.

Value

A list with the following components:

times the location of the hazard jumps.

wts the jump size of hazard function at those locations.

lambda the Lagrange multiplier.

"-2LLR" the -2Log Likelihood ratio.

Pval P-value

niters number of iterations used

Author(s)

Mai Zhou
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References

Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal
of Multivariate Analysis 80, 166-188.

Examples

fun <- function(x) { as.numeric(x <= 6.5) }
emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
fun2 <- function(x) {exp(-x)}
emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)

emplikH1B Return binomial empirical likelihood ratio for the given lambda, with
right censored data

Description

Compute the binomial empirical likelihood ratio for the given tilt parameter lambda. Most useful for
construct Wilks confidence intervals. The null hypothesis or constraint is defined by the parameter
θ, where ∫

fung(t)dlog(1−H(t)) = θ

.

Where H(t) is the unknown cumulative hazard function; fung(t) can be any given function. In the
future, the function fung may replaced by the vector of fung(x), since this is more flexible.

Input data can be right censored. If no censoring, set d=rep(1, length(x)).

Usage

emplikH1B(lambda, x, d, fung, CIforTheta=FALSE)

Arguments

lambda a scalar. Can be positive or negative. The amount of tiling.

x a vector of the censored survival times.

d a vector of the censoring indicators, 1-uncensor; 0-right censor.

fung a left continuous (weight) function used to calculate the weighted hazard in the
parameter θ. fung must be able to take a vector input. See example below.

CIforTheta an optional logical value. Default to FALSE. If set to TRUE, will return the
integrated hazard value for the given lambda.



emplikH1P 35

Details

This function is used to calculate lambda confidence interval (Wilks type) for θ.

This function is designed for the case where the true distribution should be discrete. Ties in the data
are OK.

The log empirical likelihood used here is the ‘binomial’ version empirical likelihood:

n∑
i=1

δi log(dH(xi)) + (Ri − δi) log[1− dH(xi)].

Value

A list with the following components:

times the location of the hazard jumps.

jumps the jump size of hazard function at those locations.

lambda the input lambda.

"-2LLR" the -2Log Likelihood ratio.

IntHaz The theta defined above, for the given lambda.

Author(s)

Mai Zhou

References

Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal
of Multivariate Analysis 80, 166-188.

Examples

## fun <- function(x) { as.numeric(x <= 6.5) }
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
## fun2 <- function(x) {exp(-x)}
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)

emplikH1P Return Poisson Empirical likelihood ratio for the given lambda, with
right censored data
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Description

Compute the Poisson empirical likelihood ratio for the given tilt parameter lambda. Most useful for
the construction of Wilks confidence intervals. The null hypothesis or constraint is defined by the
parameter θ, where ∫

fung(t)dH(t) = θ

.

Where H(t) is the unknown cumulative hazard function; fung(t) can be any given function.

In the future, the function fung may replaced by the vector of fung(x), since this is more flexible.

Input data can be right censored. If no censoring, set d=rep(1, length(x)).

Usage

emplikH1P(lambda, x, d, fung, CIforTheta=FALSE)

Arguments

lambda a scalar. Can be positive or negative. The amount of tiling.

x a vector of the censored survival times.

d a vector of the censoring indicators, 1-uncensor; 0-right censor.

fung a left continuous (weight) function used to calculate the weighted hazard in the
parameter θ. fung must be able to take a vector input. See example below.

CIforTheta an optional logical value. Default to FALSE. If set to TRUE, will return the
integrated hazard value for the given lambda.

Details

This function is for calculate lambda confidence intervals for θ.

This function is designed for the case where the true distribution should be continuous. So there
should be no tie in the data.

The log empirical likelihood used here is the ‘Poisson’ version empirical likelihood:

n∑
i=1

δi log(dH(xi))− [H(xi)] .

If there are ties in the data that are resulted from rounding, you may want to break the tie by adding
a different tiny number to the tied observation(s). For example: 2, 2, 2, change to 2.00001, 2.00002,
2.00003. If those are true ties (thus the true distribution must be discrete) we recommend to use
emplikH1B instead.

Value

A list with the following components:

times the location of the hazard jumps.

wts the jump size of hazard function at those locations.
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lambda the Lagrange multiplier.

"-2LLR" the -2Log Empirical Likelihood ratio, Poisson version.

MeanHaz The theta defined above, the hazard integral, if CIforTheta =TRUE.

Author(s)

Mai Zhou

References

Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal
of Multivariate Analysis 80, 166-188.

Examples

## fun <- function(x) { as.numeric(x <= 6.5) }
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
## fun2 <- function(x) {exp(-x)}
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)

emplikH2.test Empirical likelihood for weighted hazard with right censored, left
truncated data

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∫
f(t, ...)dH(t) = K

with right censored, left truncated data, where H(t) is the (unknown) cumulative hazard function;
f(t, ...) can be any given left continuous function in t; (of course the integral must be finite).

Usage

emplikH2.test(x, d, y= -Inf, K, fun, tola=.Machine$double.eps^.5,...)

Arguments

x a vector containing the censored survival times.

d a vector of the censoring indicators, 1-uncensor; 0-censor.

y a vector containing the left truncation times. If left as default value, -Inf, it
means no truncation.

K a real number used in the constraint, i.e. to set the weighted integral of hazard
to this value.
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fun a left continuous (in t) weight function used to calculate the weighted hazard in
H0. fun(t, ... ) must be able to take a vector input t.

tola an optional positive real number specifying the tolerance of iteration error in
solve the non-linear equation needed in constrained maximization.

... additional parameter(s), if any, passing along to fun. This allows an implicit
function of fun.

Details

This version works for implicit function f(t, ...).

This function is designed for continuous distributions. Thus we do not expect tie in the observation
x. If you believe the true underlying distribution is continuous but the sample observations have tie
due to rounding, then you might want to add a small number to the observations to break tie.

The likelihood used here is the ‘Poisson’ version of the empirical likelihood

n∏
i=1

(dH(xi))
δi exp[−H(xi) +H(yi)].

For discrete distributions we recommend use emplikdisc.test().

Please note here the largest observed time is NOT automatically defined to be uncensored. In the
el.cen.EM( ), it is (to make F a proper distribution always).

The constant K must be inside the so called feasible region for the computation to continue. This
is similar to the requirement that when testing the value of the mean, the value must be inside the
convex hull of the observations for the computation to continue. It is always true that the NPMLE
value is feasible. So when the computation cannot continue, that means there is no hazard function
dominated by the Nelson-Aalen estimator satisfy the constraint. You may try to move the theta
and K closer to the NPMLE. When the computation cannot continue, the -2LLR should have value
infinite.

Value

A list with the following components:

times the location of the hazard jumps.

wts the jump size of hazard function at those locations.

lambda the Lagrange multiplier.

"-2LLR" the -2Log Likelihood ratio.

Pval P-value

niters number of iterations used

Author(s)

Mai Zhou
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References

Pan, XR and Zhou, M. (2002), “Empirical likelihood in terms of cumulative hazard for censored
data”. Journal of Multivariate Analysis 80, 166-188.

See Also

emplikHs.test2

Examples

z1<-c(1,2,3,4,5)
d1<-c(1,1,0,1,1)
fun4 <- function(x, theta) { as.numeric(x <= theta) }
emplikH2.test(x=z1,d=d1, K=0.5, fun=fun4, theta=3.5)
#Next, test if H(3.5) = log(2) .
emplikH2.test(x=z1,d=d1, K=log(2), fun=fun4, theta=3.5)
#Next, try one sample log rank test
indi <- function(x,y){ as.numeric(x >= y) }
fun3 <- function(t,z){rowsum(outer(z,t,FUN="indi"),group=rep(1,length(z)))}
emplikH2.test(x=z1, d=d1, K=sum(0.25*z1), fun=fun3, z=z1)
##this is testing if the data is from an exp(0.25) population.

emplikH2B Return binomial empirical likelihood ratio for the given lambda, with
2-sample right censored data

Description

Compute the binomial empirical likelihood ratio for the given tilt parameter lambda. Most useful for
construct Wilks confidence intervals. The null hypothesis or constraint is defined by the parameter
θ, where ∫

fun1(t)d log(1−H1(t))−
∫
fun2(t)d log(1−H2(t)) = θ

.

If the lambda=0, you get the Nelson-Aalen (NPMLE) and output -2LLR =0. Otherwise the lambda
is not scaled (as in one sample case). Since there are two sample sizes. It can be confusing which
sample size to use for scale. So the lambda here is larger than those in one sample by a sclae of
(either?) sample size.

Where H1(t) and H2(t) are the unknown cumulative hazard function for sample 1/2; fun1(t) and
fun2(t) can be any given function. It can even be random, just need to be predictable. In the future,
the input function fun may replaced by the vector of fun(x), since this is more flexible.

Input data can be right censored. If no censoring, set d1=rep(1, length(x1)), and/or d2=rep(1,
length(x2)).

Usage

emplikH2B(lambda, x1, d1, x2, d2, fun1, fun2, CIforTheta=FALSE)
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Arguments

lambda a scalar. Can be positive or negative. The amount of tiling.

x1 a vector of the censored survival times. sample 1

d1 a vector of the censoring indicators, 1-uncensor; 0-right censor.

x2 a vector of the censored survival times. sample 2

d2 a vector of the censoring indicators, 1-uncensor; 0-right censor.

fun1 a left continuous (weight) function used to calculate the weighted hazard in the
parameter θ. fun1 must be able to take a vector input. See example below.

fun2 Ditto

CIforTheta an optional logical value. Default to FALSE. If set to TRUE, will return the
integrated hazard value for the given lambda.

Details

This function is used to calculate lambda confidence interval (Wilks type) for θ.

This function is designed for the case where the true distribution should be discrete. Ties in the data
are OK.

The log empirical likelihood used here is the ‘binomial’ version empirical likelihood:

logEL1 =

n∑
i=1

δi log(dH(xi)) + (Ri − δi) log[1− dH(xi)] ,

(similarly defined for sample 2) and the overall log EL = log EL1 + log EL2.

Value

A list with the following components:

"-2LLR" the -2Log Empirical Likelihood ratio, binomial version.

lambda the input lambda. The tilt. The Lagrange multiplier.

times1 the location of the hazard jumps. sample 1.

times2 the location of the hazard jumps. sample 2.

wts1 the jump size of hazard function at those locations.

wts2 the jump size of hazard function at those locations.

HazDiff2 Difference of two hazard integrals. theta defined above.

Author(s)

Mai Zhou

References

Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal
of Multivariate Analysis 80, 166-188.
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Examples

## fun <- function(x) { as.numeric(x <= 6.5) }
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
## fun2 <- function(x) {exp(-x)}
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)

emplikH2P Return Poisson Empirical likelihood ratio for the given lambda, with
2-sample right censored data

Description

Compute the Poisson empirical likelihood ratio for the given tilt parameter lambda. Most useful
when construct Wilks confidence intervals. The null hypothesis or constraint is defined by the
parameter θ, where ∫

fun1(t)dH1(t)−
∫
fun2(t)dH2(t) = θ

.

If the lambda value set to zero, you get the Nelson-Aalen (NPMLE) and output -2LLR =0. For
other values of lambda, this is not scaled (like in one sample) since there are two samples and it can
be confusing which sample size to use. So here, the lambda is larger (with a scale of sample size)
than those in one sample: emplikH1P.

Where H1(t) is the unknown cumulative hazard function of sample one; H2(t) is the cumulative
function of sample two; fun1(t) can be any given function. In the future, the function fun1 may
replaced by the vector of fun(x), since this is more flexible. Same for fun2.

Input data can be right censored. If no censoring, set d1=rep(1, length(x1)), and/or d2=rep(1,
length(x2)).

Usage

emplikH2P(lambda, x1, d1, x2, d2, fun1, fun2, CIforTheta=FALSE)

Arguments

lambda a scalar. Can be positive or negative. The amount of tiling.

x1 a vector of the censored survival times. sample one.

d1 a vector of the censoring indicators, 1-uncensor; 0-right censor.

x2 a vector of the censored survival times. sample two.

d2 a vector of the censoring indicators, 1-uncensor; 0-right censor.

fun1 a left continuous (weight) function used to calculate the weighted hazard in the
parameter θ. fun1 must be able to take a vector input. See example below.

fun2 Ditto.

CIforTheta an optional logical value. Default to FALSE. If set to TRUE, will return the
integrated hazard value for the given lambda.
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Details

This function is for calculate lambda confidence intervals for θ.

This function is designed for the case where the true distribution should be continuous. So there
should be no tie in the data.

The log empirical likelihood used here is the ‘Poisson’ version empirical likelihood:

EL1 =

n∑
i=1

δi log(dH1(xi))− [H1(xi)] ,

(similarly defined for sample 2) and the final EL is the sum of EL1 and EL2.

If there are ties in the data that are resulted from rounding, you may break the tie by adding a
different tiny number to the tied observation(s). For example: 2, 2, 2, change to 2.00001, 2.00002,
2.00003. If those are true ties (thus the true distribution must be discrete) we recommend use
emplikH2B.

Value

A list with the following components:

"-2LLR" the -2Log Empirical Likelihood ratio, Poisson version.

lambda The tilt parameter used. It is also the Lagrange multiplier.

"-2LLR(sample1)"

the -2Log EL ratio, sample 1, Poisson version. "-2LLR" = -2LLR(sample1) +
-2LLR(sample2)

HazDiff Average hazard for the constrained hazard integral, if CIforTheta =TRUE.

Author(s)

Mai Zhou

References

Pan, X. and Zhou, M. (2002), “Empirical likelihood in terms of hazard for censored data”. Journal
of Multivariate Analysis 80, 166-188.

Examples

## fun <- function(x) { as.numeric(x <= 6.5) }
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=2, fun=fun)
## fun2 <- function(x) {exp(-x)}
## emplikH1.test( x=c(1,2,3,4,5), d=c(1,1,0,1,1), theta=0.2, fun=fun2)
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emplikHs.disc2 Two sample empirical likelihood ratio for discrete hazards with right
censored, left truncated data. Many constraints.

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∫
f1(t)I[dH1<1] log(1− dH1(t))−

∫
f2(t)I[dH2<1] log(1− dH2(t)) = θ

where H∗(t) are the (unknown) discrete cumulative hazard functions; f∗(t) can be any predictable
functions of t. θ is a vector of parameters (dim=q >= 1). The given value of θ in these computation
are the value to be tested. The data can be right censored and left truncated.

When the given constants θ is too far away from the NPMLE, there will be no hazard function
satisfy this constraint and the -2 Log empirical likelihood ratio will be infinite. In this case the
computation will stop.

Usage

emplikHs.disc2(x1, d1, y1= -Inf, x2, d2, y2 = -Inf,
theta, fun1, fun2, maxit=25,tola = 1e-6, itertrace =FALSE)

Arguments

x1 a vector, the observed survival times, sample 1.

d1 a vector, the censoring indicators, 1-uncensor; 0-censor.

y1 optional vector, the left truncation times.

x2 a vector, the observed survival times, sample 2.

d2 a vector, the censoring indicators, 1-uncensor; 0-censor.

y2 optional vector, the left truncation times.

fun1 a predictable function used to calculate the weighted discrete hazard in H0.
fun1(x) must be able to take a vector input (length n) x, and output a matrix of
n x q.

fun2 Ditto.

tola an optional positive real number, the tolerance of iteration error in solve the
non-linear equation needed in constrained maximization.

theta a given vector of length q. for Ho constraint.

maxit integer, maximum number of iteration.

itertrace Logocal, lower bound for lambda
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Details

The log empirical likelihood been maximized is the ‘binomial empirical likelihood’:∑
D1i logwi + (R1i −D1i) log[1− wi] +

∑
D2j log vj + (R2j −D2j) log[1− vj ]

where wi = ∆H1(ti) is the jump of the cumulative hazard function at ti, D1i is the number of
failures observed at ti, and R1i is the number of subjects at risk at time ti (for sample one). Similar
for sample two.

For discrete distributions, the jump size of the cumulative hazard at the last jump is always 1. We
have to exclude this jump from the summation in the constraint calculation since log(1 − dH(·))
do not make sense. In the likelihood, this term contribute a zero (0*Inf).

This function can handle multiple constraints. So dim( theta) = q. The constants theta must be in-
side the so called feasible region for the computation to continue. This is similar to the requirement
that in testing the value of the mean, the value must be inside the convex hull of the observations.
It is always true that the NPMLE values are feasible. So when the computation stops, try move the
theta closer to the NPMLE. When the computation stops, the -2LLR should have value infinite.

This code can also be used to compute one sample problems. You need to artificially supply data for
sample two (with minimal sample size (2q+2)), and supply a function fun2 that ALWAYS returns
zero (zero vector or zero matrix). In the output, read the -2LLR(sample1).

Value

A list with the following components:

times1 the location of the hazard jumps in sample 1.

times2 the location of the hazard jumps in sample 2.

lambda the final value of the Lagrange multiplier.

"-2LLR" The -2Log Likelihood ratio.
"-2LLR(sample1)"

The -2Log Likelihood ratio for sample 1 only.

niters number of iterations used

Author(s)

Mai Zhou

References

Zhou and Fang (2001). “Empirical likelihood ratio for 2 sample problems for censored data”. Tech
Report, Univ. of Kentucky, Dept of Statistics

Examples

if(require("boot", quietly = TRUE)) {
####library(boot)
data(channing)
ymale <- channing[1:97,2]
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dmale <- channing[1:97,5]
xmale <- channing[1:97,3]
yfemale <- channing[98:462,2]
dfemale <- channing[98:462,5]
xfemale <- channing[98:462,3]
fun1 <- function(x) { as.numeric(x <= 960) }
########################################################
emplikHs.disc2(x1=xfemale, d1=dfemale, y1=yfemale,
x2=xmale, d2=dmale, y2=ymale, theta=0.25, fun1=fun1, fun2=fun1)

########################################################
### This time you get "-2LLR" = 1.150098 etc. etc.
##############################################################
fun2 <- function(x){ cbind(as.numeric(x <= 960), as.numeric(x <= 860))}
############ fun2 has matrix output ###############
emplikHs.disc2(x1=xfemale, d1=dfemale, y1=yfemale,
x2=xmale, d2=dmale, y2=ymale, theta=c(0.25,0), fun1=fun2, fun2=fun2)

################# you get "-2LLR" = 1.554386, etc ###########
}

emplikHs.test2 Two sample empirical likelihood ratio test for hazards with right cen-
sored, left truncated data. Many constraints.

Description

Use empirical likelihood ratio and Wilks theorem to test the null hypothesis that∫
f1(t)dH1(t)−

∫
f2(t)dH2(t) = θ

where H∗(t) is the (unknown) cumulative hazard functions; f∗(t) can be any predictable functions
of t. θ is a vector of parameters (dim=q). The given value of θ in these computation are the value
to be tested. The data can be right censored and left truncated.

When the given constants θ is too far away from the NPMLE, there will be no hazard function
satisfy this constraint and the -2 Log empirical likelihood ratio will be infinite. In this case the
computation will stop.

Usage

emplikHs.test2(x1, d1, y1= -Inf, x2, d2, y2 = -Inf,
theta, fun1, fun2, maxit=25,tola = 1e-7,itertrace =FALSE)

Arguments

x1 a vector of length n1, the observed survival times, sample 1.

d1 a vector, the censoring indicators, 1-uncensor; 0-censor.

y1 optional vector, the left truncation times.

x2 a vector of length n2, the observed survival times, sample 2.
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d2 a vector, the censoring indicators, 1-uncensor; 0-censor.

y2 optional vector, the left truncation times.

fun1 a predictable function used to calculate the weighted discrete hazard to form the
null hypothesis H0. fun1(x) must be able to take a vector input (length n1) x,
and output a matrix of n1 x q. When q=1, the output can also be a vector.

fun2 Ditto. but for length n2

tola an optional positive real number, the tolerance of iteration error in solve the
non-linear equation needed in constrained maximization.

theta a given vector of length q. for Ho constraint.

maxit integer, maximum number of Newton-Raphson type iterations.

itertrace Logocal, if the results of each iteration needs to be printed.

Details

The log likelihood been maximized is the Poisson likelihood:∑
D1i logwi −

∑
R1iwi +

∑
D2j log vj −

∑
R2jvj

where wi = ∆H1(ti) is the jump of the cumulative hazard function at ti (for first sample), D1i

is the number of failures observed at ti, R1i is the number of subjects at risk at time ti. Dido for
sample two.

For (proper) discrete distributions, the jump size of the cumulative hazard at the last jump is always
1. So, in the likelihood ratio, it cancels. But the last jump of size 1 still matter when computing the
constraint.

The constants theta must be inside the so called feasible region for the computation to continue.
This is similar to the requirement that in testing the value of the mean, the value must be inside the
convex hull of the observations. It is always true that the NPMLE values are feasible. So when the
computation stops, try move the theta closer to the NPMLE, which we print out first thing in this
function, even when other later computations do not go. When the computation stops, the -2LLR
should have value infinite.

This function uses the llog etc. function, so sometimes it may produce different result from the
one sample result. which use the regular log function. The advantage is that we avoid the possible
log(0) situation.

You can also use this function for one sample problems. You need to artificially supply data for
sample two of minimal size (like size 2q+2), and specify a fun2() that ALWAYS return 0’s (zero
vector, with length=n2 vector length, or zero matrix, with dim n2 x q as the input). Then, look for
-2LLR(sample1) in the output.

Value

A list with the following components:

"-2LLR" The -2Log empirical Likelihood ratio.

lambda the final value of the Lagrange multiplier.
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"-2LLR(sample1)"

The -2Log empirical likelihood ratio for sample one only. Useful in one sample
problems.

"Llog(sample1)"

The numerator only of the above "-2LLR(sample1)", without -2.

Author(s)

Mai Zhou

References

Zhou and Fang (2001). “Empirical likelihood ratio for 2 sample problems for censored data”. Tech
Report, Univ. of Kentucky, Dept of Statistics

See Also

emplikH2.test

Examples

if(require("boot", quietly = TRUE)) {
####library(boot)
data(channing)
ymale <- channing[1:97,2]
dmale <- channing[1:97,5]
xmale <- channing[1:97,3]
yfemale <- channing[98:462,2]
dfemale <- channing[98:462,5]
xfemale <- channing[98:462,3]
fun1 <- function(x) { as.numeric(x <= 960) }
########################################################
fun2 <- function(x){ cbind(as.numeric(x <= 960), as.numeric(x <= 860))}
############ fun2 has matrix output ###############
emplikHs.test2(x1=xfemale, d1=dfemale, y1=yfemale,
x2=xmale, d2=dmale, y2=ymale, theta=c(0,0), fun1=fun2, fun2=fun2)

}
#############################################
###################### Second example:
if(require("KMsurv", quietly = TRUE)) {
####library(KMsurv)
data(kidney)
### these functions counts the risk set size, so delta=1 always ###
temp1 <- Wdataclean3(z=kidney$time[kidney[,3]==1], d=rep(1,43) )
temp2 <- DnR(x=temp1$value, d=temp1$dd, w=temp1$weight)
TIME <- temp2$times
RISK <- temp2$n.risk
fR1 <- approxfun(x=TIME, y=RISK, method="constant", yright=0, rule=2, f=1)
temp1 <- Wdataclean3(z=kidney$time[kidney[,3]==2], d=rep(1,76) )
temp2 <- DnR(x=temp1$value, d=temp1$dd, w=temp1$weight)
TIME <- temp2$times
RISK <- temp2$n.risk
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fR2 <- approxfun(x=TIME, y=RISK, method="constant", yright=0, rule=2, f=1)

### the weight function for two sample Gehan-Wilcoxon type test ###
fun <- function(t){ fR1(t)*fR2(t)/((76*43)*sqrt(119/(76*43)) )}
### Here comes the test: ###
emplikHs.test2(x1=kidney[kidney[,3]==1,1],d1=kidney[kidney[,3]==1,2],

x2=kidney[kidney[,3]==2,1],d2=kidney[kidney[,3]==2,2],
theta=0, fun1= fun, fun2=fun)

### The results should include this ###
#$"-2LLR"
#[1] 0.002473070
#
#$lambda
#[1] -0.1713749
#######################################
######### the weight function for log-rank test #####
funlogrank <- function(t){sqrt(119/(76*43))*fR1(t)*fR2(t)/(fR1(t)+fR2(t))}
##### Now the log-rank test ###
emplikHs.test2(x1=kidney[kidney[,3]==1,1],d1=kidney[kidney[,3]==1,2],

x2=kidney[kidney[,3]==2,1],d2=kidney[kidney[,3]==2,2],
theta=0, fun1=funlogrank, fun2=funlogrank)

##### The result of log rank test should include this ###
#
#$"-2LLR"
#[1] 2.655808
#
#$lambda
#[1] 3.568833
#######################################################
###### the weight function for both type test ####
funBOTH <- function(t) {

cbind(sqrt(119/(76*43))*fR1(t)*fR2(t)/(fR1(t)+fR2(t)),
fR1(t)*fR2(t)/((76*43)*sqrt(119/(76*43)))) }

#### The test that combine both tests ###
emplikHs.test2(x1=kidney[kidney$type==1,1],d1=kidney[kidney$type==1,2],

x2=kidney[kidney$type==2,1],d2=kidney[kidney$type==2,2],
theta=c(0,0), fun1=funBOTH, fun2=funBOTH)

#### the result should include this ###
#
#$"-2LLR"
#[1] 13.25476
#
#$lambda
#[1] 14.80228 -21.86733
##########################################
}

findLnew Find the Wilks Confidence Interval Lower Bound from the Given (em-
pirical) Likelihood Ratio Function
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Description

This function is similar to findUL2 but here the seeking of lower and upper bound are separate (the
other half is findUnew).

The reason for this is: sometime we need to supply the fun with different nuisance parameter(s)
values when seeking Lower or Upper bound. For example fun returns the -2LLR for a given
parameter of interest, but there are additional nuisance parameter need to be profiled out, and we
need to give a range of the nuisance parameter to be max/min over. This range can be very different
for parameter near Upper bound vs near Lower bound. In the findUL2, you have to supply a range
really wide that (hopefully) works for both Upper and Lower bound. Here, with separate findLnew
and findUnew we can tailor the range for one end of the confidence interval.

Those nuisance parameter(s) are supplied via the ... input of this function.

Another improvement is that we used the "extendInt" option of the uniroot. So now we can and
did used a smaller default step input, compare to findUL2.

This program uses uniroot( ) to find (only) the lower (Wilks) confidence limit based on the -2 log
likelihood ratio, which the required input fun is supposed to supply.

Basically, starting from MLE, we search on lower direction, by step away from MLE, until we find
values that have -2LLR = level. (the value of -2LLR at MLE is supposed to be zero.)

At curruent implimentation, only handles one dimesional parameter, i.e. only confidence intervals,
not confidence regions.

Usage

findLnew(step=0.003, initStep=0, fun, MLE, level=3.84146, tol=.Machine$double.eps^0.5,...)

Arguments

step a positive number. The starting step size of the search. Reasonable value should
be about 1/5 of the SD of MLE.

initStep a nonnegative number. The first step size of the search. Sometimes, you may
want to put a larger innitStep to speed the search.

fun a function that returns a list. One of the item in the list should be "-2LLR",
which is the -2 log (empirical) likelihood ratio. The first input of fun must be
the parameter for which we are seeking the confidence interval. (The MLE or
NPMLE of this parameter should be supplied as in the input MLE). The rest of
the input to fun are typically the data. If the first input of fun is set to MLE,
then the returned -2LLR should be 0.

MLE The MLE of the parameter. No need to be exact, as long as it is inside the
confidence interval.

level an optional positive number, controls the confidence level. Default to 3.84146
= chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a 90% confidence
interval.

tol Error bound of the final result.

... additional arguments, if any, to pass to fun.
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Details

Basically we repeatedly testing the value of the parameter, until we find those which the -2 log
likelihood value is equal to 3.84146 (or other level, if set differently).

Value

A list with the following components:

Low the lower limit of the confidence interval.

FstepL the final step size when search lower limit. An indication of the precision.

Lvalue The -2LLR value of the final Low value. Should be approximately equal to level.
If larger than level, than the confidence interval limit Low is wrong.

Author(s)

Mai Zhou

References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. CRC Press.

Examples

## example with tied observations. Kaplan-Meier mean=4.0659.
## For more examples see vignettes.
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
myfun6 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){t}, mu=theta)
}
findLnew(step=0.1, fun=myfun6, MLE=4.0659, x=x, d=d)

findUL Find the Wilks Confidence Interval from the Given (empirical) Likeli-
hood Ratio Function

Description

This program uses uniroot( ) to find the upper and lower (Wilks) confidence limits based on the -2
log likelihood ratio, which the required input fun is supposed to supply.

Basically, starting from MLE, we search on both directions, by step away from MLE, until we find
values that have -2LLR = level. (the value of -2LLR at MLE is supposed to be zero.)

At curruent implimentation, only handles one dimesional parameter, i.e. only confidence intervals,
not confidence regions.

For examples of using this function to find confidence interval, see the pdf vignettes file.
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Usage

findUL (step = 0.01, initStep =0, fun, MLE, level = 3.84146, ...)

Arguments

step a positive number. The starting step size of the search. Reasonable value should
be about 1/5 of the SD of MLE.

initStep a nonnegative number. The first step size of the search. Sometimes, you may
want to put a larger innitStep to speed the search.

fun a function that returns a list. One of the item in the list should be "-2LLR",
which is the -2 log (empirical) likelihood ratio. The first input of fun must be
the parameter for which we are seeking the confidence interval. (The MLE or
NPMLE of this parameter should be supplied as in the input MLE). The rest of
the input to fun are typically the data. If the first input of fun is set to MLE,
then the returned -2LLR should be 0.

MLE The MLE of the parameter. No need to be exact, as long as it is inside the
confidence interval.

level an optional positive number, controls the confidence level. Default to 3.84 =
chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a 90% confidence
interval.

... additional arguments, if any, to pass to fun.

Details

Basically we repeatedly testing the value of the parameter, until we find those which the -2 log
likelihood value is equal to 3.84 (or other level, if set differently).

If there is no value exactly equal to 3.84, it is better to use findULold( ), where we stop at the value
which result a -2 log likelihood just below 3.84. (as in the discrete case, like quantiles.)

Value

A list with the following components:

Low the lower limit of the confidence interval.

Up the upper limit of the confidence interval.

FstepL the final step size when search lower limit. An indication of the precision.

FstepU Ditto. An indication of the precision of the upper limit.

Lvalue The -2LLR value of the final Low value. Should be approximately equal to level.
If larger than level, than the confidence interval limit Low is wrong.

Uvalue Ditto. Should be approximately equa to level.

Author(s)

Mai Zhou
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References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. CRC Press.

Examples

## example with tied observations. Kaplan-Meier mean=4.0659.
## For more examples see vignettes.
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
myfun6 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){t}, mu=theta)
}
findUL(step=0.2, fun=myfun6, MLE=4.0659, x=x, d=d)

findUL2 Find the Wilks Confidence Interval from the Given (empirical) Likeli-
hood Ratio Function

Description

This program uses simple search and uniroot( ) to find the upper and lower (Wilks) confidence limits
based on the -2 log likelihood ratio, which the required input fun is supposed to supply.

This function is faster than findUL( ).

Basically, starting from MLE, we search on both directions, by step away from MLE, until we find
values that have -2LLR = level. (the value of -2LLR at MLE is supposed to be zero.)

At curruent implimentation, only handles one dimesional parameter, i.e. only confidence intervals,
not confidence regions.

For examples of using this function to find confidence interval, see the pdf vignettes file.

Usage

findUL2(step=0.01, initStep=0, fun, MLE, level=3.84146, tol=.Machine$double.eps^0.5, ...)

Arguments

step a positive number. The starting step size of the search. Reasonable value should
be about 1/5 of the SD of MLE.

initStep a nonnegative number. The first step size of the search. Sometimes, you may
want to put a larger innitStep to speed the search.

fun a function that returns a list. One of the item in the list should be "-2LLR",
which is the -2 log (empirical) likelihood ratio. The first input of fun must be
the parameter for which we are seeking the confidence interval. (The MLE or
NPMLE of this parameter should be supplied as in the input MLE). The rest of
the input to fun are typically the data. If the first input of fun is set to MLE,
then the returned -2LLR should be 0.
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MLE The MLE of the parameter. No need to be exact, as long as it is inside the
confidence interval.

level an optional positive number, controls the confidence level. Default to 3.84 =
chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a 90% confidence
interval.

tol tolerance to pass to uniroot( ). Default to .Machine$double.eps^0.5

... additional arguments, if any, to pass to fun.

Details

Basically we repeatedly testing the value of the parameter, until we find those which the -2 log
likelihood value is equal to 3.84 (or other level, if set differently).

If there is no value exactly equal to 3.84, we stop at the value which result a -2 log likelihood just
below 3.84. (as in the discrete case, like quantiles.)

Value

A list with the following components:

Low the lower limit of the confidence interval.

Up the upper limit of the confidence interval.

FstepL the final step size when search lower limit. An indication of the precision.

FstepU Ditto. An indication of the precision of the upper limit.

Lvalue The -2LLR value of the final Low value. Should be approximately equal to level.
If larger than level, than the confidence interval limit Low is wrong.

Uvalue Ditto. Should be approximately equa to level.

Author(s)

Mai Zhou

References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. CRC Press.

Zhou, M. (2002). Computing censored empirical likelihood ratio by EM algorithm. JCGS

Examples

## example with tied observations. Kaplan-Meier mean=4.0659.
## For more examples see vignettes.
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
myfun6 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){t}, mu=theta)
}
findUL2(step=0.2, fun=myfun6, MLE=4.0659, x=x, d=d)
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findULold Find the Wilks Confidence Interval from the Given (empirical) Likeli-
hood Ratio Function

Description

This program uses simple search to find the upper and lower (Wilks) confidence limits based on the
-2 log likelihood ratio, which the required input fun is supposed to supply.

Basically, starting from MLE, we search on both directions, by step away from MLE, until we find
values that have -2LLR = level. (the value of -2LLR at MLE is supposed to be zero.)

At curruent implimentation, only handles one dimesional parameter, i.e. only confidence intervals,
not confidence regions.

For examples of using this function to find confidence interval, see the pdf vignettes file.

Usage

findULold (step = 0.01, initStep =0, fun, MLE, level = 3.84146, ...)

Arguments

step a positive number. The starting step size of the search. Reasonable value should
be about 1/5 of the SD of MLE.

initStep a nonnegative number. The first step size of the search. Sometimes, you may
want to put a larger innitStep to speed the search.

fun a function that returns a list. One of the item in the list should be "-2LLR",
which is the -2 log (empirical) likelihood ratio. The first input of fun must be
the parameter for which we are seeking the confidence interval. (The MLE or
NPMLE of this parameter should be supplied as in the input MLE). The rest of
the input to fun are typically the data. If the first input of fun is set to MLE,
then the returned -2LLR should be 0.

MLE The MLE of the parameter. No need to be exact, as long as it is inside the
confidence interval.

level an optional positive number, controls the confidence level. Default to 3.84146
= chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a 90% confidence
interval.

... additional arguments, if any, to pass to fun.

Details

Basically we repeatedly testing the value of the parameter, until we find those which the -2 log
likelihood value is equal to 3.84146 (or other level, if set differently).

If there is no value exactly equal to 3.84146, we stop at the value which result a -2 log likelihood
just below 3.84146. (as in the discrete case, like quantiles.)
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Value

A list with the following components:

Low the lower limit of the confidence interval.

Up the upper limit of the confidence interval.

FstepL the final step size when search lower limit. An indication of the precision.

FstepU Ditto. An indication of the precision of the upper limit.

Lvalue The -2LLR value of the final Low value. Should be approximately equal to level.
If larger than level, than the confidence interval limit Low is wrong.

Uvalue Ditto. Should be approximately equa to level.

Author(s)

Mai Zhou

References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. CRC Press.

Examples

## example with tied observations. Kaplan-Meier mean=4.0659.
## For more examples see vignettes.
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
myfun6 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){t}, mu=theta)
}
## findULold(step=0.2, fun=myfun6, MLE=4.0659, level = qchisq(0.9, df=1) , x=x, d=d)

findUnew Find the Wilks Confidence Interval Upper Bound from the Given (em-
pirical) Likelihood Ratio Function

Description

This function is similar to findUL2 but here the seeking of lower and upper bound are separate (the
other half is findLnew).

See the help file of findLnew. Since sometimes the likelihood ratio is a Profile likelihood ratio and
we need to supply the fun with different nuisance parameter(s) value(s) when seeking Lower or
Upper bound. Those nuisance parameter(s) are supplied via the ... input.

Another improvement is that we used the "extendInt" option of the uniroot. So now we can and
did used a smaller default step input, 0.003, compare to findUL2.

This program uses uniroot( ) to find (only) the upper (Wilks) confidence limit based on the -2 log
likelihood ratio, which the required input fun is supposed to supply.
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Basically, starting from MLE, we search on upper/higher direction, by step away from MLE, until we
find values that have -2LLR = level. (the value of -2LLR at MLE is supposed to be zero.)

At curruent implimentation, only handles one dimesional parameter, i.e. only confidence intervals,
not confidence regions.

Usage

findUnew(step=0.003, initStep=0, fun, MLE, level=3.84146, tol=.Machine$double.eps^0.5,...)

Arguments

step a positive number. The starting step size of the search. Reasonable value should
be about 1/5 of the SD of MLE.

initStep a nonnegative number. The first step size of the search. Sometimes, you may
want to put a larger innitStep to speed the search.

fun a function that returns a list. One of the item in the list should be "-2LLR",
which is the -2 log (empirical) likelihood ratio. The first input of fun must be
the parameter for which we are seeking the confidence interval. (The MLE or
NPMLE of this parameter should be supplied as in the input MLE). The rest of
the input to fun are typically the data. If the first input of fun is set to MLE,
then the returned -2LLR should be 0.

MLE The MLE of the parameter. No need to be exact, as long as it is inside the
confidence interval.

level an optional positive number, controls the confidence level. Default to 3.84146
= chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a 90% confidence
interval.

tol Error bound of the final result.

... additional arguments, if any, to pass to fun.

Details

Basically we repeatedly testing the value of the parameter, until we find those which the -2 log
likelihood value is equal to 3.84146 (or other level, if set differently).

Value

A list with the following components:

Up the lower limit of the confidence interval.

FstepU the final step size when search lower limit. An indication of the precision/error
size.

Uvalue The -2LLR value of the final Up value. Should be approximately equal to level.
If larger than level, than the confidence interval limit Up is wrong.

Author(s)

Mai Zhou
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References

Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. CRC Press.

Examples

## example with tied observations. Kaplan-Meier mean=4.0659.
## For more examples see vignettes.
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
myfun6 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){t}, mu=theta)
}
findUnew(step=0.1, fun=myfun6, MLE=4.0659, x=x, d=d)

myeloma Multiple Myeloma Data

Description

Krall, Uthoff, and Harley (1975) analyzed data from a study on multiple myeloma in which re-
searchers treated 65 patients with alkylating agents.

Of those patients, 48 died during the study and 17 survived. In the data set MYELOMA, the variable
TIME represents the survival time in months from diagnosis. The variable VSTATUS consists of
two values, 0 and 1, indicating whether the patient was alive or dead, respectively, at the of end the
study. If the value of VSTATUS is 0, the corresponding value of TIME is censored.

The variables thought to be related to survival are LOGBUN (log BUN at diagnosis), HGB (hemoglobin
at diagnosis), PLATELET (platelets at diagnosis: 0=abnormal, 1=normal), AGE (age at diagnosis
in years), LOGWBC (log WBC at diagnosis), FRAC (fractures at diagnosis: 0=none, 1=present),
LOGPBM (log percentage of plasma cells in bone marrow), PROTEIN (proteinuria at diagnosis),
and SCALC (serum calcium at diagnosis).

Data are from http://ftp.sas.com/techsup/download/sample/samp_lib/

statsampExamples_of_Coxs_Model.html

Usage

data(myeloma)

Format

A data frame containing 65 observations on 11 variables:

[,1] "time"
[,2] "vstatus"
[,3] "logBUN"
[,4] "HGB"
[,5] "platelet"
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[,6] "age"
[,7] "logWBC"
[,8] "FRAC"
[,9] "logPBM"

[,10] "protein"
[,11] "SCALC"

References

Krall, J.M., Uthoff, V.A., and Harley, J. B. (1975). A Step-up Procedure for Selecting Variables
Associated with Survival. Biometrics, 31, 49-57.

RankRegTest Test the AFT model Rank Regression estimator by Empirical Likeli-
hood

Description

Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to
beta, based on the rank estimator for the AFT model.

The log empirical likelihood been maximized is∑
d=1

log∆F (ei) +
∑
d=0

log[1− F (ei)];

where ei are the residuals.

Usage

RankRegTest(y, d, x, beta, type="Gehan")

Arguments

y a vector of length N, containing the censored responses.

d a vector (length N) of either 1’s or 0’s. d=1 means y is uncensored; d=0 means
y is right censored.

x a matrix of size N by q.

beta a vector of length q. the value of the regression coefficient to be tested in the
model yi = βxi + ϵi

.

type default to Gehan type. The other option is Logrank type.
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Details

The estimator of beta can be obtained by function rankaft( ) in the package rankreg. But here
you may test other values of beta. If you test the beta value that is obtained from the rankaft( ),
then the -2LLR should be 0 and the p-value should be 1.

The above likelihood should be understood as the likelihood of the error term, so in the regression
model the error ei should be iid.

The estimation equation used when maximize the empirical likelihood is

0 =
∑
i

ϕ(ei)di∆F (ei)(xi − x̄i)/(nwi)

which was described in detail in the references below.

See also the function RankRegTestH, which is based on the hazard likelihood.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; should have approximate chisq distribution under Ho.

logel2 the log empirical likelihood, under estimating equation.

logel the log empirical likelihood of the Kaplan-Meier of e’s.

prob the probabilities that max the empirical likelihood under rank estimating equa-
tion constraint.

Author(s)

Mai Zhou.

References

Kalbfleisch, J. and Prentice, R. (2002) The Statistical Analysis of Failure Time Data. 2nd Ed. Wiley,
New York. (Chapter 7)

Jin, Z., Lin, D.Y., Wei, L. J. and Ying, Z. (2003). Rank-based inference for the accelerated failure
time model. Biometrika, 90, 341-53.

Zhou, M. (2005). Empirical likelihood analysis of the rank estimator for the censored accelerated
failure time model. Biometrika, 92, 492-98.

Examples

data(myeloma)
RankRegTest(y=myeloma[,1], d=myeloma[,2], x=myeloma[,3], beta= -15.50147)
# you should get "-2LLR" = 9.050426e-05 (practically zero)
# The beta value, -15.50147, was obtained by rankaft() from the rankreg package.
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RankRegTestH Test the AFT model, Rank Regression estimator by (Hazard)Empirical
Likelihood

Description

Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to
beta, based on the rank estimator/estimating equation of the AFT model.

The log empirical likelihood been maximized is the hazard empirical likelihood.

Usage

RankRegTestH(y, d, x, beta, type="Gehan")

Arguments

y a vector of length N, containing the censored responses.

d a vector (length N) of either 1’s or 0’s. d=1 means y is uncensored; d=0 means
y is right censored.

x a matrix of size N by q.

beta a vector of length q. the value of the regression coefficient to be tested in the
model yi = βxi + ϵi

.

type default to Gehan type. The other option is Logrank type.

Details

The estimator of beta can be obtained by function rankaft( ) in the package rankreg. But here
you may test other values of beta. If you test the beta value that is obtained from the rankaft( ),
then the -2LLR should be 0 and the p-value should be 1.

The above likelihood should be understood as the likelihood of the error term, so in the regression
model the error ei should be iid.

The estimating equation used when maximize the empirical likelihood is

0 =
∑
i

R(ei)ϕ(ei)di∆A(ei)(xi − x̄i)

where all notation was described in detail in the references below.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; should have approximate chisq distribution under H0.

logel2 the log empirical likelihood, under estimating equation.

logel the log empirical likelihood of the Kaplan-Meier of e’s.
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Author(s)

Mai Zhou

References

Zhou, M. (2016) Empirical Likelihood Methods in Survival Analysis. CRC Press.

Kalbfleisch, J. and Prentice, R. (2002) The Statistical Analysis of Failure Time Data. 2nd Ed. Wiley,
New York. (Chapter 7)

Jin, Z., Lin, D.Y., Wei, L. J. and Ying, Z. (2003). Rank-based inference for the accelerated failure
time model. Biometrika, 90, 341-53.

Zhou, M. (2005). Empirical likelihood analysis of the rank estimator for the censored accelerated
failure time model. Biometrika, 92, 492–498.

Examples

data(myeloma)
RankRegTestH(y=myeloma[,1], d=myeloma[,2], x=myeloma[,3], beta= -15.50147)
# you should get "-2LLR" = 9.050426e-05 (practically zero)
# The beta value, -15.50147, was obtained by rankaft() from
# the rankreg package.

ROCnp Test the ROC curve by Empirical Likelihood

Description

Use empirical likelihood ratio to test the hypothesis Ho: (1-b0)th quantile of sample 1 = (1-t0)th
quantile of sample 2. This is the same as testing Ho: R(t0)= b0, where R(.) is the ROC curve.

The log empirical likelihood been maximized is∑
d1=1

log∆F1(t1i) +
∑
d1=0

log[1− F1(t1i)] +
∑
d2=1

log∆F2(t2j) +
∑
d2=0

log[1− F2(t2j)].

This empirical likelihood ratio has a chi square limit under Ho.

Usage

ROCnp(t1, d1, t2, d2, b0, t0)

Arguments

t1 a vector of length n. Observed times, may be right censored.
d1 a vector of length n, censoring status. d=1 means t is uncensored; d=0 means t

is right censored.
t2 a vector of length m. Observed times, may be right censored.
d2 a vector of length m, censoring status.
b0 a scalar between 0 and 1.
t0 a scalar, betwenn 0 and 1.
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Details

Basically, we first test (1-b0)th quantile of sample 1 = c and also test (1-t0)th quantile of sample 2
= c. This way we obtain two log likelihood ratios.

Then we minimize the sum of the two log likelihood ratio over c.

See the tech report below for details on a similar setting.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; have approximate chisq distribution under Ho.

cstar the estimated common quantile.

Author(s)

Mai Zhou.

References

Zhou, M. and Liang, H (2008). Empirical Likelihood for Hybrid Two Sample Problem with Cen-
sored Data. Univ. Kentucky Tech. Report.

Su, H., Zhou, M. and Liang, H. (2011). Semi-parametric hybrid empirical likelihood inference for
two-sample comparison with censored data. Lifetime Data Analysis, 17, 533-551.

Examples

#### An example of testing the equality of two medians. No censoring.
ROCnp(t1=rexp(100), d1=rep(1,100), t2=rexp(120), d2=rep(1,120), b0=0.5, t0=0.5)
##########################################################################
#### Next, an example of finding 90 percent confidence interval of R(0.5)
#### Note: We are finding confidence interval for R(0.5). So we are testing
#### R(0.5)= 0.35, 0.36, 0.37, 0.38, etc. try to find values so that
#### testing R(0.5) = L , U has p-value of 0.10, then [L, U] is the 90 percent
#### confidence interval for R(0.5).
#set.seed(123)
#t1 <- rexp(200)
#t2 <- rexp(200)
#ROCnp( t1=t1, d1=rep(1, 200), t2=t2, d2=rep(1, 200), b0=0.5, t0=0.5)$"-2LLR"
#### since the -2LLR value is less than 2.705543 = qchisq(0.9, df=1), so the
#### confidence interval contains 0.5.
#gridpoints <- 35:65/100
#ELvalues <- gridpoints
#for( i in 1:31 ) ELvalues[i] <- ROCnp(t1=t1, d1=rep(1, 200),
# t2=t2, d2=rep(1, 200), b0=gridpoints[i], t0=0.5)$"-2LLR"
#myfun1 <- approxfun(x=gridpoints, y=ELvalues)
#uniroot( f= function(x){myfun1(x)-2.705543}, interval= c(0.35, 0.5) )
#uniroot( f= function(x){myfun1(x)-2.705543}, interval= c(0.5, 0.65) )
#### So, taking the two roots, we see the 90 percent confidence interval for R(0.5)
#### in this case is [0.4478081, 0.5889425].
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ROCnp2 Test the ROC curve by Empirical Likelihood

Description

Use empirical likelihood ratio to test the hypothesis Ho: (1-b0)th quantile of sample 1 = (1-t0)th
quantile of sample 2. This is the same as testing Ho: R(t0)= b0, where R(.) is the ROC curve.

The log empirical likelihood been maximized is∑
d1=1

log∆F1(t1i) +
∑
d1=0

log[1− F1(t1i)] +
∑
d2=1

log∆F2(t2j) +
∑
d2=0

log[1− F2(t2j)].

This empirical likelihood ratio has a chi square limit under Ho.

Usage

ROCnp2(t1, d1, t2, d2, b0, t0)

Arguments

t1 a vector of length n. Observed times, sample 1. may be right censored.

d1 a vector of length n, censoring status. d=1 means t is uncensored; d=0 means t
is right censored.

t2 a vector of length m. Observed times, sample 2. may be right censored.

d2 a vector of length m, censoring status.

b0 a scalar, between 0 and 1.

t0 a scalar, betwenn 0 and 1.

Details

First, we test (1-b0)th quantile of sample 1 = c and also test (1-t0)th quantile of sample 2 = c. This
way we obtain two log likelihood ratios.

Then we minimize the sum of the two log likelihood ratios over c.

This version use an exhaust search for the minimum (over c). Since the objective (log lik) are
piecewise constants, the optimum( ) function in R do not work well. See the tech report below for
details on a similar setting.

Value

A list with the following components:

"-2LLR" the -2 loglikelihood ratio; have approximate chisq distribution under Ho.

cstar the estimated common quantile.
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Author(s)

Mai Zhou

References

Su, Haiyan; Zhou, Mai and Liang, Hua (2011). Semi-parametric Hybrid Empirical Likelihood
Inference for Two Sample Comparison with Censored Data. Lifetime Data Analysis, 17, 533-551.

Examples

#### An example of testing the equality of two medians.
#### No censoring.
# ROCnp2(t1=rexp(100), d1=rep(1,100), t2=rexp(120),
# d2=rep(1,120), b0=0.5, t0=0.5)
###############################################################
#### This example do not work on the Solaris Sparc machine.
#### But works fine on other platforms.
###########
#### Next, an example of finding 90 percent confidence
#### interval of R(0.5)
#### Note: We are finding confidence interval for R(0.5).
#### So we are testing
#### R(0.5)= 0.35, 0.36, 0.37, 0.38, etc. try to find
#### values so that testing R(0.5) = L , U has p-value
#### of 0.10, then [L, U] is the 90 percent
#### confidence interval for R(0.5).
#set.seed(123)
#t1 <- rexp(200)
#t2 <- rexp(200)
#ROCnp( t1=t1, d1=rep(1, 200), t2=t2, d2=rep(1, 200),
# b0=0.5, t0=0.5)$"-2LLR"
#### since the -2LLR value is less than
#### 2.705543 = qchisq(0.9, df=1), so the
#### confidence interval contains 0.5.
#gridpoints <- 35:65/100
#ELvalues <- gridpoints
#for(i in 1:31) ELvalues[i] <- ROCnp2(t1=t1, d1=rep(1, 200),
# t2=t2, d2=rep(1, 200), b0=gridpoints[i], t0=0.5)$"-2LLR"
#myfun1 <- approxfun(x=gridpoints, y=ELvalues)
#uniroot(f=function(x){myfun1(x)-2.705543},
# interval= c(0.35, 0.5) )
#uniroot(f= function(x){myfun1(x)-2.705543},
# interval= c(0.5, 0.65) )
#### So, taking the two roots, we see the 90 percent
#### confidence interval for R(0.5) in this
#### case is [0.4457862, 0.5907723].
###############################################
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smallcell Smallcell Lung Cancer Data

Description

There are 121 observations on 4 variables. Arm is the indication of two treatments. (either C + E
or E + C). Entry is the age of the patient at entry. Survival is the survival time and indicator is the
censoring indicator (right censoring). For more details please see the reference below.

Data are from Ying, Z., Jung, SH, and Wei, LJ (1995). Median regression analysis with censored
data. Journal of the American Statistical Association, 90, 178-184.

Usage

data(smallcell)

Format

A data frame containing 121 observations on 4 variables:

[,1] "arm"
[,2] "entry"
[,3] "survival"
[,4] "indicator"

References

Ying, Z., Jung, SH, and Wei, LJ (1995). Median regression analysis with censored data. Journal of
the American Statistical Association, 90, 178-184.

Maksymiuk, A. W., Jett, J. R., Earle, J. D., Su, J. Q., Diegert, F. A., Mailliard, J. A., Kardinal, C. G.,
Krook, J. E., Veeder, M. H., Wiesenfeld, M., Tschetter, L. K., and Levitt, R. (1994). Sequencing and
Schedule Effects of Cisplatin Plus Etoposide in Small Cell Lung Cancer Results of a North Central
Cancer Treatment Group Randomized Clinical Trial. Journal of Clinical Oncology, 12, 70-76.

WRegEst Compute the casewise weighted regression estimator for AFT model

Description

For the AFT model, this function computes the case weighted estimator of beta. Either the least
squares estimator or the regression quantile estimator.

Usage

WRegEst(x, y, delta, LS=TRUE, tau=0.5)
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Arguments

x a matrix of size N by q.

y a vector of length N, containing the censored responses. Usually the log of the
original observed failure times.

delta a vector (length N) of either 1’s or 0’s. d=1 means y is uncensored; d=0 means
y is right censored.

LS a logical value. If TRUE then the function will return the least squares estimator.
If FALSE then the function will return the quantile regression estimator, with the
quantile level specified by tau.

.

tau a scalar, between 0 and 1. The quantile to be used in quantile regression. If
tau=0.5 then it is the median regression. If LS=TRUE, then it is ignored.

Details

Due to the readily available minimizer, we only provide least squares and quantile regression here.
However, in the companion testing function WRegTest the user can supply a self defined psi func-
tion, corresponding to the general M-estimation in the regression modeling. (since there is no
minimization needed).

The estimator is the minimizer of
n∑

i=1

wiρ(Yi −Xib)

Assuming a correlation model
Yi = Xiβ + σ(Xi)ϵi

, where ρ() is either the square or the absolute value function.

Value

The estimator β̂.

Author(s)

Mai Zhou.

References

Zhou, M.; Bathke, A. and Kim, M. (2012). Empirical likelihood analysis of the Heteroscastic
Accelerated Failure Time model. Statistica Sinica, 22, 295-316.

Examples

data(smallcell)
WRegEst(x=cbind(1,smallcell[,1],smallcell[,2]),

y=smallcell[,3], delta=smallcell[,4])
####################################################
#### you should get x1 x2 x3
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#### -59.22126 -488.41306 16.03259
####################################################
WRegEst(x=cbind(1,smallcell[,1],smallcell[,2]),

y=log10(smallcell[,3]), delta=smallcell[,4], LS=FALSE)
########################################################
#### you should get
#### [1] 2.603342985 -0.263000044 0.003836832
########################################################

WRegTest Test the case weighted regression estimator by Empirical Likelihood

Description

Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to
beta0, by the case weighted estimation method.

The log empirical likelihood been maximized is∑
d=1

log∆F (yi) +
∑
d=0

log[1− F (yi)].

Usage

WRegTest(x, y, delta, beta0, psifun=function(t){t})

Arguments

x a matrix of size N by q. Random design matrix.

y a vector of length N, containing the censored responses.

delta a vector (length N) of either 1’s or 0’s. delta=1 means y is uncensored; delta=0
means y is right censored.

beta0 a vector of length q. The value of the regression coefficient to be tested in the
linear model

.

psifun the estimating function. The definition of it determines the type of estimator
under testing.

Details

The above likelihood should be understood as the likelihood of the censored responses y and delta.

This version can handle the model where beta is a vector (of length q).

The estimation equations used when maximize the empirical likelihood is

0 =
∑

δi∆F (Yi)Xiψ(Yi −Xiβ0)

which was described in detail in the reference below.
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For median regression (Least Absolute Deviation) estimator, you should define the psifun as
+1,−1 or 0 when t is > 0, < 0 or = 0.

For ordinary least squares estimator, psifun should be the identity function psifun <- function(t)t.

Value

A list with the following components:

"-2LLR" the -2 log likelihood ratio; have approximate chisq distribution under H0.

P-val the p-value using the chi-square approximation.

Author(s)

Mai Zhou.

References

Zhou, M.; Kim, M. and Bathke, A. (2012). Empirical likelihood analysis of the case weighted
estimator in heteroscastic AFT model. Statistica Sinica, 22, 295-316.

Examples

xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19)
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